Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023118932> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W2023118932 endingPage "288" @default.
- W2023118932 startingPage "279" @default.
- W2023118932 abstract "Dans cette étude la clinoptilolite, échangeur cationique naturel, est utilisée pour l'élimination de l'ion ammonium des eaux dans le but de les rendre propres à la consommation. Les expériences en laboratoire ont montré que la capacité utile d'échange de cette zéolite est très faible par rapport à sa capacité totale (2,17 meq g−1); sa valeur dépend de la concentration initiale en ion NH4+ de l'eau à traiter (0,06 meq g−1 pour (NH4+)0 ⋍ 1 mg l−1 et 0,108 meq g−1 pour (NH4+)0 ⋍ 2 mg l−1). Par ailleurs, les eaux dures sont plus difficiles à traiter que les eaux douces. L'étude pilote a permis de vérifier les résultats obtenus au laboratoire. Pour une eau titrant de l'ordre de 2 mg l−1 en ion NH4+, la fuite ionique se situe à 0,2 mg l−1 et le volume d'eau traité jusqu'à la percée (définie à 0,5 mg l−1 pour les eaux à potabiliser CCE) est de l'ordre de 750 v/v (volume de solution par volume de lit échangeur). Les résultats de l'étude pilote nous ont conduit à proposer un dimensionnement d'installation et chiffrer le coût de m3 d'eau traité. The objective of this study is to develop a technique to remove ammonium ion from water intended for potable purposes. An ion exchange method is used with a selective ion exchanger, a natural cation zeolite, clinoptilolite. Glass columns (Fig. 1) are used for laboratory experiments. These experiments show that the NH4+ exchange capacity is very small compared to its total capacity 2.17 meq g−1; its value depends essentially on the NH4+ initial concentration and less on the Ca2+ concentration in the influent water. Figure 3 illustrates the practical exchange capacity relative to the initial concentration of ammonium ion for a soft water (Ca2+ = 35–50 mg l−1). We were particularly interested in waters weak in ammonium ion concentration (NH4+ = 1–3 mg l−1). In this case and for ∼1 and 2 mg l−1 NH4+ concentration in water, the practical capacity is only 0.06 and 0.108 meq g−1 respectively. The leakage is smaller than the ECC limit (European Community Council) for drinking waters (NH4+ ⩽ 0.5 mg l−1) and the treated volume of water to breakthrough, defined at 0.5 mg l−1 of NH4+, is ⩾720 BV (BV = bed volume) in both cases. In another way Fig. 6 shows that hard waters (due to Ca2+ ions) are more difficult to treat than soft waters. The practical capacity is smaller than before and the NH4+-leakage is greater. To lessen NH4+-leakage to less than 0.5 mg l−1 for soft waters down-flow and up-flow, regeneration is used. Figure 7 shows that up-flow regeneration is more attractive than down-flow regeneration. Cycle reproducibility (Figs 4 and 5) shows that the regeneration conditions satisfied our requirements: in this case, the salt consumption is 180 eq of salt per eq of NH4+ eliminated. This prompted us to try to reuse the regenerant (with NH4+ ion). An increase of NH4+-leakage is noticed in the presence of an NH4+-residual in the regenerant. This increase is more significant with down-flow regeneration. After these laboratory experiments, we carried out a semi-industrial pilot-plant. Our objective was first to verify the laboratory results and secondly to study clinoptilolite behaviour relative to the time it was used. Two plexiglass columns comprise the pilot-plant shown in Fig. 9; soft water is used for these experiments. The first column is regenerated with fresh salt solution. The cycles obtained, considering their initial NH4+-concentration, are reproduced in Fig. 10. For 2 mg l−1 NH4+ in the influent water, the leakage is about 0.2 mg l−1 and the treated volume to breakthrough (0.5 mg l−1 of NH4+) is about 750 BV. The second column is regenerated with a recycled solution. The quality of the cycles decreases with the number of reuse of the regenerant as shown in Fig. 11. Nevertheless, it is interesting to note that after 3 reuses, the performance decrease is only 25% and the leakage, although it increases is smaller than 0.5 mg l−1. Pilot results allowed us to propose a treatment of 30,000 m3 day−1; the cost per cubic meter water treated, relative to NH4+-removal, is about 0.165 FF (0.033 US $) for a plant and 0.77 FF (0.014 US $) for the same plant at the seaside. Using two serial columns decreased the cost by about 40–50%." @default.
- W2023118932 created "2016-06-24" @default.
- W2023118932 creator A5012970202 @default.
- W2023118932 creator A5033113099 @default.
- W2023118932 creator A5055853462 @default.
- W2023118932 date "1983-01-01" @default.
- W2023118932 modified "2023-09-26" @default.
- W2023118932 title "Utilisation de la clinoptilolite en potabilisation des eaux—elimination de l'ion NH4+" @default.
- W2023118932 cites W2295446005 @default.
- W2023118932 cites W3121323181 @default.
- W2023118932 doi "https://doi.org/10.1016/0043-1354(83)90181-1" @default.
- W2023118932 hasPublicationYear "1983" @default.
- W2023118932 type Work @default.
- W2023118932 sameAs 2023118932 @default.
- W2023118932 citedByCount "24" @default.
- W2023118932 countsByYear W20231189322012 @default.
- W2023118932 countsByYear W20231189322015 @default.
- W2023118932 countsByYear W20231189322019 @default.
- W2023118932 countsByYear W20231189322020 @default.
- W2023118932 countsByYear W20231189322021 @default.
- W2023118932 countsByYear W20231189322022 @default.
- W2023118932 crossrefType "journal-article" @default.
- W2023118932 hasAuthorship W2023118932A5012970202 @default.
- W2023118932 hasAuthorship W2023118932A5033113099 @default.
- W2023118932 hasAuthorship W2023118932A5055853462 @default.
- W2023118932 hasConcept C117760992 @default.
- W2023118932 hasConcept C13965031 @default.
- W2023118932 hasConcept C145148216 @default.
- W2023118932 hasConcept C161790260 @default.
- W2023118932 hasConcept C178790620 @default.
- W2023118932 hasConcept C185592680 @default.
- W2023118932 hasConcept C2778020220 @default.
- W2023118932 hasConcept C2778077586 @default.
- W2023118932 hasConcept C2779870022 @default.
- W2023118932 hasConcept C55493867 @default.
- W2023118932 hasConceptScore W2023118932C117760992 @default.
- W2023118932 hasConceptScore W2023118932C13965031 @default.
- W2023118932 hasConceptScore W2023118932C145148216 @default.
- W2023118932 hasConceptScore W2023118932C161790260 @default.
- W2023118932 hasConceptScore W2023118932C178790620 @default.
- W2023118932 hasConceptScore W2023118932C185592680 @default.
- W2023118932 hasConceptScore W2023118932C2778020220 @default.
- W2023118932 hasConceptScore W2023118932C2778077586 @default.
- W2023118932 hasConceptScore W2023118932C2779870022 @default.
- W2023118932 hasConceptScore W2023118932C55493867 @default.
- W2023118932 hasIssue "3" @default.
- W2023118932 hasLocation W20231189321 @default.
- W2023118932 hasOpenAccess W2023118932 @default.
- W2023118932 hasPrimaryLocation W20231189321 @default.
- W2023118932 hasRelatedWork W1498374830 @default.
- W2023118932 hasRelatedWork W1965904862 @default.
- W2023118932 hasRelatedWork W1966635824 @default.
- W2023118932 hasRelatedWork W1975996441 @default.
- W2023118932 hasRelatedWork W2124551010 @default.
- W2023118932 hasRelatedWork W2373836585 @default.
- W2023118932 hasRelatedWork W2565227169 @default.
- W2023118932 hasRelatedWork W2610971882 @default.
- W2023118932 hasRelatedWork W2745935184 @default.
- W2023118932 hasRelatedWork W2890509585 @default.
- W2023118932 hasVolume "17" @default.
- W2023118932 isParatext "false" @default.
- W2023118932 isRetracted "false" @default.
- W2023118932 magId "2023118932" @default.
- W2023118932 workType "article" @default.