Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023124502> ?p ?o ?g. }
- W2023124502 endingPage "1252" @default.
- W2023124502 startingPage "1240" @default.
- W2023124502 abstract "Abstract Concentration of atmospheric CO 2 and temperature have both been rising for the last three decades. In this century, the temperature has been predicted to rise by 2–5 °C and the CO 2 concentration to double. These changes may affect the primary and secondary metabolism of plants and thus have implications for other trophic levels. However, the biotic interactions in changing climate conditions are poorly known. In this study, two questions were addressed: (i) How will climate change affect growth and the amounts of secondary compounds in flexible plant species? and (ii) How will this affect herbivores living on this species. Four clones of the dark‐leaved willow ( Salix myrsinifolia (Salisb.)) seedlings were grown in closed‐top chambers with two controlled factors: concentration of atmospheric CO 2 and temperature (T). There were four combinations of these factors, each combination replicated four times (total of 16 chambers): (i) Control CO 2 (350 ppm) and control T, (ii) Elevated CO 2 (700 ppm) and control T, (iii) Control CO 2 and elevated T (2 °C), and (iv) Elevated CO 2 and elevated T. Stem growth and aerial biomass of the plants were determined; and the leaf phenolics, nitrogen and water concentrations were analysed. In addition the growth rate of larvae and feeding preference of adults of a specialist herbivore, the chrysomelid beetle Phratora vitellinae (L.), on the treated willow leaves were measured. Elevated temperature and CO 2 concentration increased the stem biomass and elevated CO 2 increased leaf biomass and total aerial biomass of the willows. Patterns of biomass allocation were different in different temperature treatments. At elevated temperature there was less branch and leaf material in relation to stems than at the control temperature. Moreover, patterns of biomass allocation differed among clones. CO 2 enhancement increased the specific leaf weight (SLW) and reduced both water and nitrogen content of the leaves, however, leaf area was unaffected by the treatments. Carbon dioxide (CO 2 ) and T enhancement reduced the concentrations of several phenolic compounds in the leaves. Phenolic compounds, nutrients, and water in the leaves might be diluted partly due to increased carbon allocation to different structures (e.g. thickening of cell wall and increase of trichomes, etc.). In some cases plant clones showed specific responses to treatments. The CO 2 enhancement reduced the relative growth rate (RGR) of the beetle larvae, and in contrast, temperature elevation increased it. Adult beetles did not clearly discriminate between willow leaves grown in different T and CO 2 environments, but tended to eat more leaf material from chambers with doubled CO 2 concentration. At elevated CO 2 adult beetles may need to eat more leaf material in order to reproduce, which may in turn prolong the life cycles, increasing the risk of being eaten and possibly affecting ability to overwinter successfully. Overall, climate change may significantly modify the dynamic interaction between willow and beetle populations." @default.
- W2023124502 created "2016-06-24" @default.
- W2023124502 creator A5013513451 @default.
- W2023124502 creator A5023223875 @default.
- W2023124502 creator A5027887324 @default.
- W2023124502 creator A5068364952 @default.
- W2023124502 creator A5077155710 @default.
- W2023124502 date "2002-10-24" @default.
- W2023124502 modified "2023-10-18" @default.
- W2023124502 title "Effects of elevated CO<sub>2</sub> and temperature on plant growth and herbivore defensive chemistry" @default.
- W2023124502 cites W105152402 @default.
- W2023124502 cites W1484917742 @default.
- W2023124502 cites W1521402061 @default.
- W2023124502 cites W1964625789 @default.
- W2023124502 cites W1965838433 @default.
- W2023124502 cites W1970253390 @default.
- W2023124502 cites W1972911171 @default.
- W2023124502 cites W1973628936 @default.
- W2023124502 cites W1975249459 @default.
- W2023124502 cites W1978575435 @default.
- W2023124502 cites W1984877612 @default.
- W2023124502 cites W1988831334 @default.
- W2023124502 cites W1997008380 @default.
- W2023124502 cites W1998844112 @default.
- W2023124502 cites W2007468519 @default.
- W2023124502 cites W2010613025 @default.
- W2023124502 cites W2011696461 @default.
- W2023124502 cites W2015902268 @default.
- W2023124502 cites W2020749580 @default.
- W2023124502 cites W2023572187 @default.
- W2023124502 cites W2026186870 @default.
- W2023124502 cites W2026931502 @default.
- W2023124502 cites W2028940652 @default.
- W2023124502 cites W2031708620 @default.
- W2023124502 cites W2033024771 @default.
- W2023124502 cites W2034022451 @default.
- W2023124502 cites W2040225994 @default.
- W2023124502 cites W2043223880 @default.
- W2023124502 cites W2045551546 @default.
- W2023124502 cites W2051152556 @default.
- W2023124502 cites W2059353728 @default.
- W2023124502 cites W2063165095 @default.
- W2023124502 cites W2068810504 @default.
- W2023124502 cites W2079868654 @default.
- W2023124502 cites W2083817260 @default.
- W2023124502 cites W2088283943 @default.
- W2023124502 cites W2109237674 @default.
- W2023124502 cites W2128541043 @default.
- W2023124502 cites W2137282167 @default.
- W2023124502 cites W2141095840 @default.
- W2023124502 cites W2141959156 @default.
- W2023124502 cites W2143581591 @default.
- W2023124502 cites W2144211033 @default.
- W2023124502 cites W2147072291 @default.
- W2023124502 cites W2155035516 @default.
- W2023124502 cites W2156348142 @default.
- W2023124502 cites W2164180320 @default.
- W2023124502 cites W2233791365 @default.
- W2023124502 cites W231149970 @default.
- W2023124502 cites W2318590408 @default.
- W2023124502 cites W2322129466 @default.
- W2023124502 cites W2324144844 @default.
- W2023124502 cites W244376122 @default.
- W2023124502 cites W2495282771 @default.
- W2023124502 cites W4377084717 @default.
- W2023124502 doi "https://doi.org/10.1046/j.1365-2486.2002.00553.x" @default.
- W2023124502 hasPublicationYear "2002" @default.
- W2023124502 type Work @default.
- W2023124502 sameAs 2023124502 @default.
- W2023124502 citedByCount "205" @default.
- W2023124502 countsByYear W20231245022012 @default.
- W2023124502 countsByYear W20231245022013 @default.
- W2023124502 countsByYear W20231245022014 @default.
- W2023124502 countsByYear W20231245022015 @default.
- W2023124502 countsByYear W20231245022016 @default.
- W2023124502 countsByYear W20231245022017 @default.
- W2023124502 countsByYear W20231245022018 @default.
- W2023124502 countsByYear W20231245022019 @default.
- W2023124502 countsByYear W20231245022020 @default.
- W2023124502 countsByYear W20231245022021 @default.
- W2023124502 countsByYear W20231245022022 @default.
- W2023124502 countsByYear W20231245022023 @default.
- W2023124502 crossrefType "journal-article" @default.
- W2023124502 hasAuthorship W2023124502A5013513451 @default.
- W2023124502 hasAuthorship W2023124502A5023223875 @default.
- W2023124502 hasAuthorship W2023124502A5027887324 @default.
- W2023124502 hasAuthorship W2023124502A5068364952 @default.
- W2023124502 hasAuthorship W2023124502A5077155710 @default.
- W2023124502 hasConcept C115540264 @default.
- W2023124502 hasConcept C128758860 @default.
- W2023124502 hasConcept C144027150 @default.
- W2023124502 hasConcept C185592680 @default.
- W2023124502 hasConcept C18903297 @default.
- W2023124502 hasConcept C2777945561 @default.
- W2023124502 hasConcept C2780844648 @default.
- W2023124502 hasConcept C46325548 @default.
- W2023124502 hasConcept C59822182 @default.
- W2023124502 hasConcept C6557445 @default.