Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023124966> ?p ?o ?g. }
- W2023124966 endingPage "101" @default.
- W2023124966 startingPage "94" @default.
- W2023124966 abstract "The smart electricity grid enables a two-way flow of power and data between suppliers and consumers in order to facilitate the power flow optimization in terms of economic efficiency, reliability and sustainability. This infrastructure permits the consumers and the micro-energy producers to take a more active role in the electricity market and the dynamic energy management (DEM). The most important challenge in a smart grid (SG) is how to take advantage of the users' participation in order to reduce the cost of power. However, effective DEM depends critically on load and renewable production forecasting. This calls for intelligent methods and solutions for the real-time exploitation of large volumes of data generated by the vast amount of smart meters. Hence, robust data analytics, high performance computing, efficient data network management, and cloud computing techniques are critical towards the optimized operation of SGs. This research aims to highlight the big data issues and challenges faced by the DEM employed in SG networks. It also provides a brief description of the most commonly used data processing methods in the literature, and proposes a promising direction for future research in the field." @default.
- W2023124966 created "2016-06-24" @default.
- W2023124966 creator A5050704435 @default.
- W2023124966 creator A5061744244 @default.
- W2023124966 creator A5065163983 @default.
- W2023124966 date "2015-09-01" @default.
- W2023124966 modified "2023-10-10" @default.
- W2023124966 title "Big Data Analytics for Dynamic Energy Management in Smart Grids" @default.
- W2023124966 cites W1511952312 @default.
- W2023124966 cites W1970859914 @default.
- W2023124966 cites W1975404935 @default.
- W2023124966 cites W1984560471 @default.
- W2023124966 cites W1984575476 @default.
- W2023124966 cites W1990960780 @default.
- W2023124966 cites W2010305660 @default.
- W2023124966 cites W2016166216 @default.
- W2023124966 cites W2017073201 @default.
- W2023124966 cites W2021689699 @default.
- W2023124966 cites W2025911229 @default.
- W2023124966 cites W2026721931 @default.
- W2023124966 cites W2027069555 @default.
- W2023124966 cites W2027221119 @default.
- W2023124966 cites W2031080041 @default.
- W2023124966 cites W2044742906 @default.
- W2023124966 cites W2055743332 @default.
- W2023124966 cites W2068060907 @default.
- W2023124966 cites W2071520594 @default.
- W2023124966 cites W2080751096 @default.
- W2023124966 cites W2084281591 @default.
- W2023124966 cites W2084333448 @default.
- W2023124966 cites W2085714935 @default.
- W2023124966 cites W2095441031 @default.
- W2023124966 cites W2096190458 @default.
- W2023124966 cites W2106119405 @default.
- W2023124966 cites W2106221208 @default.
- W2023124966 cites W2110366306 @default.
- W2023124966 cites W2111846054 @default.
- W2023124966 cites W2115906826 @default.
- W2023124966 cites W2119290091 @default.
- W2023124966 cites W2128612770 @default.
- W2023124966 cites W2132594929 @default.
- W2023124966 cites W2135846084 @default.
- W2023124966 cites W2137091644 @default.
- W2023124966 cites W2143645984 @default.
- W2023124966 cites W2145509823 @default.
- W2023124966 cites W2154053567 @default.
- W2023124966 cites W2155546972 @default.
- W2023124966 cites W2162133608 @default.
- W2023124966 cites W2168285483 @default.
- W2023124966 cites W2171208762 @default.
- W2023124966 cites W2171878998 @default.
- W2023124966 cites W2337969425 @default.
- W2023124966 cites W2911964244 @default.
- W2023124966 cites W2964304161 @default.
- W2023124966 doi "https://doi.org/10.1016/j.bdr.2015.03.003" @default.
- W2023124966 hasPublicationYear "2015" @default.
- W2023124966 type Work @default.
- W2023124966 sameAs 2023124966 @default.
- W2023124966 citedByCount "228" @default.
- W2023124966 countsByYear W20231249662015 @default.
- W2023124966 countsByYear W20231249662016 @default.
- W2023124966 countsByYear W20231249662017 @default.
- W2023124966 countsByYear W20231249662018 @default.
- W2023124966 countsByYear W20231249662019 @default.
- W2023124966 countsByYear W20231249662020 @default.
- W2023124966 countsByYear W20231249662021 @default.
- W2023124966 countsByYear W20231249662022 @default.
- W2023124966 countsByYear W20231249662023 @default.
- W2023124966 crossrefType "journal-article" @default.
- W2023124966 hasAuthorship W2023124966A5050704435 @default.
- W2023124966 hasAuthorship W2023124966A5061744244 @default.
- W2023124966 hasAuthorship W2023124966A5065163983 @default.
- W2023124966 hasBestOaLocation W20231249662 @default.
- W2023124966 hasConcept C10558101 @default.
- W2023124966 hasConcept C105795698 @default.
- W2023124966 hasConcept C111919701 @default.
- W2023124966 hasConcept C119599485 @default.
- W2023124966 hasConcept C120314980 @default.
- W2023124966 hasConcept C121332964 @default.
- W2023124966 hasConcept C124101348 @default.
- W2023124966 hasConcept C127413603 @default.
- W2023124966 hasConcept C146733006 @default.
- W2023124966 hasConcept C163258240 @default.
- W2023124966 hasConcept C186370098 @default.
- W2023124966 hasConcept C188573790 @default.
- W2023124966 hasConcept C202444582 @default.
- W2023124966 hasConcept C206658404 @default.
- W2023124966 hasConcept C2522767166 @default.
- W2023124966 hasConcept C2742236 @default.
- W2023124966 hasConcept C33923547 @default.
- W2023124966 hasConcept C41008148 @default.
- W2023124966 hasConcept C43214815 @default.
- W2023124966 hasConcept C62520636 @default.
- W2023124966 hasConcept C75684735 @default.
- W2023124966 hasConcept C7817414 @default.
- W2023124966 hasConcept C79158427 @default.
- W2023124966 hasConcept C79974875 @default.
- W2023124966 hasConcept C9652623 @default.