Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023131844> ?p ?o ?g. }
- W2023131844 abstract "Abstract Background Non-random patterns of genetic variation exist among individuals in a population owing to a variety of evolutionary factors. Therefore, populations are structured into genetically distinct subpopulations. As genotypic datasets become ever larger, it is increasingly difficult to correctly estimate the number of subpopulations and assign individuals to them. The computationally efficient non-parametric, chiefly Principal Components Analysis (PCA)-based methods are thus becoming increasingly relied upon for population structure analysis. Current PCA-based methods can accurately detect structure; however, the accuracy in resolving subpopulations and assigning individuals to them is wanting. When subpopulations are closely related to one another, they overlap in PCA space and appear as a conglomerate. This problem is exacerbated when some subpopulations in the dataset are genetically far removed from others. We propose a novel PCA-based framework which addresses this shortcoming. Results A novel population structure analysis algorithm called iterative pruning PCA (ipPCA) was developed which assigns individuals to subpopulations and infers the total number of subpopulations present. Genotypic data from simulated and real population datasets with different degrees of structure were analyzed. For datasets with simple structures, the subpopulation assignments of individuals made by ipPCA were largely consistent with the STRUCTURE, BAPS and AWclust algorithms. On the other hand, highly structured populations containing many closely related subpopulations could be accurately resolved only by ipPCA, and not by other methods. Conclusion The algorithm is computationally efficient and not constrained by the dataset complexity. This systematic subpopulation assignment approach removes the need for prior population labels, which could be advantageous when cryptic stratification is encountered in datasets containing individuals otherwise assumed to belong to a homogenous population." @default.
- W2023131844 created "2016-06-24" @default.
- W2023131844 creator A5016150476 @default.
- W2023131844 creator A5025385359 @default.
- W2023131844 creator A5026749433 @default.
- W2023131844 creator A5036611424 @default.
- W2023131844 creator A5042890212 @default.
- W2023131844 creator A5046419753 @default.
- W2023131844 creator A5061565686 @default.
- W2023131844 creator A5082079875 @default.
- W2023131844 date "2009-11-23" @default.
- W2023131844 modified "2023-10-10" @default.
- W2023131844 title "Iterative pruning PCA improves resolution of highly structured populations" @default.
- W2023131844 cites W1785523630 @default.
- W2023131844 cites W1975612392 @default.
- W2023131844 cites W1982516085 @default.
- W2023131844 cites W1990295095 @default.
- W2023131844 cites W2002046811 @default.
- W2023131844 cites W2006533296 @default.
- W2023131844 cites W2017136882 @default.
- W2023131844 cites W2022481980 @default.
- W2023131844 cites W2024027525 @default.
- W2023131844 cites W2059759656 @default.
- W2023131844 cites W2061585692 @default.
- W2023131844 cites W2068666435 @default.
- W2023131844 cites W2071949631 @default.
- W2023131844 cites W2089950018 @default.
- W2023131844 cites W2095119242 @default.
- W2023131844 cites W2097902492 @default.
- W2023131844 cites W2098126593 @default.
- W2023131844 cites W2102714321 @default.
- W2023131844 cites W2108169091 @default.
- W2023131844 cites W2113076747 @default.
- W2023131844 cites W2120483845 @default.
- W2023131844 cites W2125397676 @default.
- W2023131844 cites W2133275384 @default.
- W2023131844 cites W2134866233 @default.
- W2023131844 cites W2137137328 @default.
- W2023131844 cites W2150536115 @default.
- W2023131844 cites W2157752701 @default.
- W2023131844 cites W2158489424 @default.
- W2023131844 cites W2168521098 @default.
- W2023131844 cites W2172086791 @default.
- W2023131844 cites W2172260290 @default.
- W2023131844 cites W2217809488 @default.
- W2023131844 cites W3003734944 @default.
- W2023131844 doi "https://doi.org/10.1186/1471-2105-10-382" @default.
- W2023131844 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2790469" @default.
- W2023131844 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19930644" @default.
- W2023131844 hasPublicationYear "2009" @default.
- W2023131844 type Work @default.
- W2023131844 sameAs 2023131844 @default.
- W2023131844 citedByCount "30" @default.
- W2023131844 countsByYear W20231318442012 @default.
- W2023131844 countsByYear W20231318442013 @default.
- W2023131844 countsByYear W20231318442014 @default.
- W2023131844 countsByYear W20231318442015 @default.
- W2023131844 countsByYear W20231318442016 @default.
- W2023131844 countsByYear W20231318442017 @default.
- W2023131844 countsByYear W20231318442018 @default.
- W2023131844 countsByYear W20231318442019 @default.
- W2023131844 countsByYear W20231318442020 @default.
- W2023131844 crossrefType "journal-article" @default.
- W2023131844 hasAuthorship W2023131844A5016150476 @default.
- W2023131844 hasAuthorship W2023131844A5025385359 @default.
- W2023131844 hasAuthorship W2023131844A5026749433 @default.
- W2023131844 hasAuthorship W2023131844A5036611424 @default.
- W2023131844 hasAuthorship W2023131844A5042890212 @default.
- W2023131844 hasAuthorship W2023131844A5046419753 @default.
- W2023131844 hasAuthorship W2023131844A5061565686 @default.
- W2023131844 hasAuthorship W2023131844A5082079875 @default.
- W2023131844 hasBestOaLocation W20231318441 @default.
- W2023131844 hasConcept C104317684 @default.
- W2023131844 hasConcept C105795698 @default.
- W2023131844 hasConcept C108010975 @default.
- W2023131844 hasConcept C117251300 @default.
- W2023131844 hasConcept C119857082 @default.
- W2023131844 hasConcept C124101348 @default.
- W2023131844 hasConcept C135763542 @default.
- W2023131844 hasConcept C144024400 @default.
- W2023131844 hasConcept C149923435 @default.
- W2023131844 hasConcept C153180895 @default.
- W2023131844 hasConcept C153209595 @default.
- W2023131844 hasConcept C154945302 @default.
- W2023131844 hasConcept C166976648 @default.
- W2023131844 hasConcept C27438332 @default.
- W2023131844 hasConcept C2908647359 @default.
- W2023131844 hasConcept C33923547 @default.
- W2023131844 hasConcept C41008148 @default.
- W2023131844 hasConcept C54355233 @default.
- W2023131844 hasConcept C6557445 @default.
- W2023131844 hasConcept C86803240 @default.
- W2023131844 hasConceptScore W2023131844C104317684 @default.
- W2023131844 hasConceptScore W2023131844C105795698 @default.
- W2023131844 hasConceptScore W2023131844C108010975 @default.
- W2023131844 hasConceptScore W2023131844C117251300 @default.
- W2023131844 hasConceptScore W2023131844C119857082 @default.
- W2023131844 hasConceptScore W2023131844C124101348 @default.
- W2023131844 hasConceptScore W2023131844C135763542 @default.
- W2023131844 hasConceptScore W2023131844C144024400 @default.