Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023135276> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2023135276 endingPage "S103" @default.
- W2023135276 startingPage "S103" @default.
- W2023135276 abstract "LipidsVolume 34, Issue S1Part1 p. S103-S103 Lipids And Cancer Reversal of tumor cell drug resistance by essential fatty acids U. N. Das, Corresponding Author U. N. Das [email protected] Division of Internal Medicine, Clinical Immunology and Biochemistry, L.V. Prased Eye Institute, Banjara Hills, Hyderabad, 500 043 IndiaE-mail: [email protected]Search for more papers by this author U. N. Das, Corresponding Author U. N. Das [email protected] Division of Internal Medicine, Clinical Immunology and Biochemistry, L.V. Prased Eye Institute, Banjara Hills, Hyderabad, 500 043 IndiaE-mail: [email protected]Search for more papers by this author First published: 01 January 1999 https://doi.org/10.1007/BF02562248Citations: 3Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat No abstract is available for this article. REFERENCES 11. Exton, J.H. (1994) Phosphatidylcholine Breakdown and Signal Transduction, Biochim. Biophys. Acta 1212, 26–42. 22. Hannun, Y.A. (1994) The Sphingomyelin Cycle and the Second Messenger Function of Ceramide, J Biol. Chem. 269, 3125–3128. 33. Hannun, Y.A. (1997) Sphingolipid Metabolism and Biology, Encyclopedia of Human Biology 8, 133–143. 44. Michel, C., Van Echten-Deckert, G., Rother, J., Sandhoff, K., Wang, E., and Merrill, A.H., Jr. (1997) Characterization of Ceramide Synthesis. A Dihydroceramide Desaturase Introduces the 4,5-trans-Double Bond of Sphingosine at the Level of Dihydroceramide, J. Biol Chem. 272, 22432–22437. 55. Ullman, M.D., and Radin, N.S. (1974) The Enzymatic Formation of Sphingomyelin from Ceramide and Lecithin in Mouse Liver, J. Biol. Chem. 249, 1506–1512. 66. Voelker, D.R.K., and Kennedy, E.P. (1982) Cellular and Enzymic Synthesis of Sphingomyelin, Biochemistry 21, 2753–2759. 77. Van Echten, G., and Sandhoff, K. (1993) Ganglioside Metabolism. Enzymology, Topology, and Regulation, J. Biol. Chem. 268, 5341–5344. 88. Kolesnick, R.N., and Hemer, M.R. (1990) Characterization of a Ceramide Kinase Activity from Human Leukemia (HL-60) Cells. Separation from Diacylglycerol Kinase Activity, J. Biol. Chem. 265, 18803–18808. 99. Liu, B., Obeid, L.M., and Hannun, Y.A. (1997) Sphingomyelinases in Cell Regulation, Semin. Cell Dev. Biol. 8, 311–322. 1010. Hassler, D.F., and Bell, R.M. (1993) Ceramidases: Enzymology and Metabolic Roles, Adv. Lipid Res. 26, 49–57. 1111. Hannun, Y.A., Loomis, C.R., Merrill, A.H. Jr., and Bell, R.M. (1986) Sphingosine Inhibition of Protein Kinase C Activity and Phorbol Dibutyrate Binding in vitro and Human Platelets, J. Biol. Chem. 261, 12604–12609. 1212. Okazaki, T., Bell, R.M., and Hannun, Y.A. (1989) Sphingomyelin Turnover Induced by Vitamin D3 in HL-60 Cells, J. Biol. Chem. 264, 19076–19080. 1313. Hannun, Y.A. (1996) Functions of Ceramide in Coordinating Cellular Responses to Stress, Science 274, 1855–1859. 1414. Jayadev, S., Liu, B., Bielawska, A.E., Lee, J.Y., Nazaire, F., Pushkareva, M.Y., Obeid, L.M., and Hannun, Y.A. (1995) Role of Ceramide in Cell Cycle Arrest, J. Biol. Chem. 270, 2047–2052. 1515. Dbaibo, G., Pushkareva, M.Y., Jayadev, S., Schwartz, J.K., Horowitz, J.M., Obeid, L.M., and Hannun, Y.A. (1995) Retinoblastoma Gene Product as a Downstream Target for a Ceramide-Dependent Pathway of Growth Arrest, Proc. Natl. Acad. Sci. USA 92, 1347–1351. 1616. Obeid, L.M., Linardic, CM., Karolak, L.A., and Hannun, Y.A. (1993) Programmed Cell Death Induced by Ceramide, Science 259, 1769–1771. 1717. Dbaibo, G.S., Perry, D.K., Gamard, C.J., Platt, R., Poirier, G.G., Obeid, L.M., and Hannun, Y.A. (1997) Cytokine Response Modifier A (CrmA) Inhibits Ceramide Formation in Response to Tumor Necrosis Factor (TNF)-α: CrmA and Bcl-2 Target Distinct Components in the Apoptotic Pathway, J. Exp. Med. 185, 481–490. 1818. Olivera, A., Buckley, N.E., and Spiegel, S. (1992) Sphingomyelinase and Cell-Permeable Ceramide Analogs Stimulate Cellular Proliferation in Quiescent Swiss 3T3 Fibroblasts, J. Biol. Chem. 267, 26121–26127. 1919. Spiegel, S., and Milstein, S. (1995) Sphingolipid Metabolites: Members of a New Class of Lipid Second Messengers, J. Membr. Biol. 146, 225–237. 2020. Ohta, H., Sweeney, E.A., Masamune, A., Yatomi, Y., Hakomori, S., and Igarashi, Y. (1995) Induction of Apoptosis by Sphingosine in Human Leukemic HL-60 Cells: A Passible Endogenous Modulator of Apoptotic DNA Fragmentation Occurring During Phorbol Ester-Induced Differentiation, Cancer Res. 55, 691–697. 2121. Zhang, H., Buckley, N.E., Gibson, K., and Spiegel, S. (1990) Sphingosine Stimulates Cellular Proliferation via a Protein Kinase C-Independent Pathway, J. Biol. Chem. 265, 76–81. 2222. Gomez-Muñoz, A., Martin, A., O'Brien, L., and Brindley, D.N. (1994) Cell-Permeable Ceramides Inhibit the Stimulation of DNA Synthesis and Phospholipase D Activity by Phosphatidate and Lysophosphatidate in Rat Fibroblasts, J. Biol. Chem. 269, 8937–8943. 2323. Zhang, H., Desai, N.N., Olivera, A., Seki, T., Brooker, G., and Spiegel, S. (1991) Sphingosine-1-Phosphate, a Novel Lipid, Involved in Cellular Proliferation, J. Cell Biol. 114, 155–167. 2424. Yamada, K., Sakane, F., Imai, S., and Takemura, H. (1993) Sphingosine Activates Cellular Diacylglycerol Kinase in Intact Jurkat Cells, a Human T-cell Line, Biochim. Biophys. Acta 7/69, 217–224. 2525. Lavie, Y., Piterman, O., and Liscovitch, M. (1990) Inhibition of Phosphatidic Acid Phosphohydrolase Activity by Sphingosine. Dual Action of Sphingosine in Diacylglycerol Signal Termination, FEBS Lett. 277, 7–10. 2626. Desai, N.N., Zhang, H., Olivera, A., Mattie, M.E., and Spiegel, S. (1992) Sphingosine-1-Phosphate, a Metabolite of Sphingosine, Increases Phosphatidic Acid Levels by Phospholipase D Activation,/ Biol. Chem. 267, 23122–23128. 2727. De Maria, R., Lenti, L., Malisan, F., D'Agostino, F., Tomassini, B., Zeuner, A., Rippo, M.R., and Testi, R. (1997) Requirement for GD3 Ganglioside in CD95- and Ceramide-Induced Apoptosis, Science 277, 1652–1655. 2828. Merrill, A.H., Jr., Schmelz, E.-M., Dillehay, D.L., Spiegel, S., Shayman, J.A., Schroeder, J.J., Riley, R.T., Voss, K.A., and Wang, E. (1997) Sphingolipids—The Enigmatic Lipid Class: Biochemistry, Physiology, and Pathophysiology, Toxicol. Appl. Pharmacol. 142, 208–225. 2929. Nikolova-Karakashian, M., Vales, T.R., Wang, E., Menaldino, D.S., Alexander, C., Goh, J., Liotta, D.C., and Merrill, A.H., Jr. (1997) Ceramide Synthase and Ceramidases in the Regulation of Sphingoid Base Metabolism, in Sphingolipid-Mediated Signal Transduction ( Y.A. Hannun, ed.) pp. 159–172, MBIU-R.G. Landes Company, Austin, TX. 3030. Merrill, A.H., Jr, Liotta, D.C., and Riley, R.T. (1996) Fumonisins: Fungal Toxins That Shed Light on Sphingolipid Function, Trends Cell Biol. 6, 218–223. 3131. Riley, R.T., Wang, E., and Schroeder, J.J., Smith, E.R., Plattner, R.D., Abbas, H., Yoo, H.S., and Merrill, A.H., Jr. (1996) Evidence for Disruption of Sphingolipid Metabolism as a Contributing Factor in the Toxicity and Carcinogenicity of Fumonisins, Natural Toxins 4, 3–15. 3232. Bernert, J.T., and Ullman, M.D. (1981) Biosynthesis of Sphingomyelin from Erythro-Ceramides and Phosphatidylcholine by a Microsomal Cholinephosphotransferase, Biochim. Biophys. Acta 666, 99–109. 3333. Linardic, CM., and Hannun, Y.A. (1994) Identification of a Distinct Pool of Sphingomyelin Involved in the Sphingomyelin Cycle, J. Biol. Chem. 269, 23530–23537. 3434. Tamiya-Koizumi, K., Umekawa, H., Yoshida, S., and Kojima, K. (1989) Existence of Mg2+-Dependent, Neutral Sphingomyelinase in Nuclei of Rat Ascites Hepatoma Cells, J. Biochem. (Tokyo) 106, 593–598. 3535. Jayadev, S., Linardic, CM., and Hannun, Y.A. (1994) Identification of Arachidonic Acid as a Mediator of Sphingomyelin Hydrolysis in Response to Tumor Necrosis Factor Alpha, J. Biol. Chem. 269, 5757–5763. 3636. Liu, B., and Hannun, Y.A. (1997) Inhibition of the Neutral Magnesium-Dependent Sphingomyelinase by Glutathione, J. Biol Chem. 272, 16281–16287. 3737. Tomiuk, S., Hofmann, K., Nix, M., Zumbansen, M and Stoffel, W. (1998) Cloned Mammalian Neutral Sphingomyelinase: Functions in Sphingolipid Signaling? Proc. Natl. Acad. Sci. USA 95, 3638–3643. 3838. Yamanaka, T., and Suzuki, K. (1982) Acid Sphingomyelinase of Human Brain: Purification to Homogeneity, J. Neurochem. 38, 1753–1764. 3939. Schutze, S., Pothoff, K., Machleidt, T., Berkovic, D., Wiegmann, K., and Kronke, M. (1992) TNF Activates NF-κPB by Phosphatidylcholine-Specific Phospholipase C-Induced “Acidic” Sphingomyelin Breakdown, Cell 71, 765–776. 4040. Cifone, M.G., De Maria, R., Roncaioli, P., Rippo, M.R., Azuma, M., Lanier, L.L., Santoni, A., and Testi, R. (1994) Apoptotic Signaling Through CD95 (Fas/APO-1) Activates an Acidic Sphingomyelinase, J. Exp. Med. 180, 1547–1552. 4141. Andrieu, N., Salvayre, R., and Levade, T. (1994) Evidence Against Involvement of the Acid Lysosomal Sphingomyelinase in the Tumor-Necrosis-Factor- and Interleukin-1-Induced Sphingomyelin Cycle and Cell Proliferation in Human Fibroblasts, Biochem. J. 303, 341–345. 4242. Sugita, M., Dulaney, J.T., and Moser, H.W. (1972) Ceramidase Deficiency in Farber's Disease (Lipogranulomatosi), Science 775, 1100–1102. 4343. Koch, J., Gartner, S., Li, C.M, Quintern, L.E., Bernardo, K., Levran, O., Schnabel, D., Desnick, R.J., Schuchman, E.H., and Sandhoff, K. (1996) Molecular Cloning and Characterization of a Full-length Complementary DNA Encoding Human Acid Ceramidase, J. Biol. Chem. 271, 33110–33115. 4444. McKay, C. (1997) Ceramidase and Signal Transduction, in Sphingolipid-Mediated Signal Transduction ( Y.A. Hannun, ed.) pp. 173–181, MBIU-R.G. Landes Company, Austin, TX. 4545. Gatt, S. (1963) Enzymic Hydrolysis and Synthesis of Ceramides, J. Biol. Chem. 238, PC3131–PC3133. 4646. Bernardo, K., Hurwitz, R., Zenk, T., Desnick, R.J., Ferlinz, K., Schuchman, E.H., and Sandhoff, K. (1995) Purification, Characterization, and Biosynthesis of Human Acid Ceramidase, J. Biol. Chem. 270, 11098–11102. 4747. Hazer, K., Paton, B.C., Poulos, A., Kustermann-Kuhn, B., Roggendorf, W., Grisar, T., and Popp, M. (1989) Sphingolipid Activator Protein Deficiency in a 16-Week-Old Atypical Gaucher Disease Patient and His Fetal Sibling: Biochemical Signs of Combined Sphingolipidoses, Eur. J. Pediatr. 149, 31–39. 4848. Yada, Y., Higuchi, K., and Imokawa, G. (1995) Purification and Biochemical Characterization of Membrane-Bound Epidermal Ceramidases from Guinea Pig Skin, J. Biol. Chem. 270, 12677–12684. 4949. Azuma, N., O'Brien, J.S., Moser, H.W., and Kishimotor, Y. (1994) Stimulation of Acid Ceramidase Activity by Saposin D, Arch. Biochem. Biopkys. 311, 354–357. 5050. Bielawska, A., Greenberg, M.S., Perry, D., Jayadev, S., Shayman, J.A., McKay, C., and Hannun, Y.A. (1996) (1S,2R) d-Erythro-2-(N-myristoylamino)-l-phenyl-1-propanol as an Inhibitor of Ceramidase, J. Biol. Chem. 271, 12646–12654. 5151. Stoffei, W., and Melzner, I. (1980) Studies in vitro on the Biosynthesis of Ceramide and Sphingomyelin. A Reevaluation of Proposed Pathways, Hoppe-Seyler's Z. Physiol. Chem. 361, 755–771. 5252. Sribney, M., and Kennedy, E.P. (1958) The Enzymatic Synthesis of Sphingomyelin, J. Biol. Chem. 233, 1315–1322. 5353. Brady, R.O., Bradley, R.M., Young, O.M., and Kaller, H. (1965) An Alternative Pathway for the Enzymatic Synthesis of Sphingomyelin, J. Biol. Chem. 240, PC3693–PC3694. 5454. Diringer, H., Marggraf, W.D., Koch, M.A., and Anderer, F.A. (1972) Evidence for a New Biosynthetic Pathway of Sphingomyelin in SV 40 Transformed Mouse Cells, Biochim. Biophys.Acta 47, 1345–1352. 5555. Futerman, A.H., Stieger, B., Hubbard, A.L., and Pagano, R.E. (1990) Sphingomyelin Synthesis in Rat Liver Occurs Predominantly at the Cis and Medial Cisternae of the Golgi Apparatus, J. Biol. Chem. 265, 8650–8657. 5656. Marggraf, W.D., and Kanfer, J.N. (1987) Kinetic and Topographical Studies of the Phosphatidylcholine:Ceramide Choline Phosphotransferase in Plasma Membrane Particles from Mouse Ascites Cells, Biochim. Biophys. Acta 897, 57–68. 5757. Marggraf, W.D., Anderer, F.A., and Kanfer, J. (1981) The Formation of Sphingomyelin from Phosphatidylcholine in Plasma Membrane Preparations from Mouse Fibroblasts, Biochim. Biophys. Acta 664, 61–73. 5858. Vos, J.P., Giudici, M.L., Van der Bijl, P., Magni, P., Marchesini, S., Van Golde, L.M.G., and Lopes-Cardozo, M. (1995) Sphingomyelin Is Synthesized at the Plasma Membrane of Oligodendrocytes and by Purified Myelin Membranes: A Study with Fluorescent- and Radio-Labelled Ceramide Analogues, FEBS Lett. 368, 393–396. 5959. Miro Obradors, M.J., Sillence, D., Howitt, S., and Allan, D. (1997) The Subcellular Sites of Sphingomyelin Synthesis in BHK Cells, Biochim. Biophys. Acta 1359, 1–12. 6060. Luberto, C., and Hannun, Y.A. (1998) Sphingomyelin Synthase, a Potential Regulator of Intracellular Levels of Ceramide and Diacylglycerol During SV40 Transformation, J. Biol. Chem. 273, 14550–14559. 6161. Lacal, J.C., Moscat, J., and Aaronson, S.A. (1987) Novel Source of 1,2-Diacylglycerol Elevated in Cells Transformed by Haras Oncogene, Nature 313, 269–272. 6262. Santana, P., Pena, L.A., Haimovitz-Friedman, A., Martin, S., Green, D., McLoughlin, M., Cordin-Cardo, C., Schuchman, E.H., Fuks, Z., and Kolesnick, R. (1996) Acid Sphingomydinase-Deficient Human Lymphoblasts and Mice are Defective in Radition-Induced Apoptosis, Cell 86, 189–199. Citing Literature Volume34, IssueS1Part1January 1999Pages S103-S103 ReferencesRelatedInformation" @default.
- W2023135276 created "2016-06-24" @default.
- W2023135276 creator A5003733759 @default.
- W2023135276 date "1999-01-01" @default.
- W2023135276 modified "2023-09-24" @default.
- W2023135276 title "Reversal of tumor cell drug resistance by essential fatty acids" @default.
- W2023135276 cites W1601543468 @default.
- W2023135276 cites W1986737897 @default.
- W2023135276 cites W1998028162 @default.
- W2023135276 cites W1998524152 @default.
- W2023135276 cites W2052438063 @default.
- W2023135276 doi "https://doi.org/10.1007/bf02562248" @default.
- W2023135276 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/10419108" @default.
- W2023135276 hasPublicationYear "1999" @default.
- W2023135276 type Work @default.
- W2023135276 sameAs 2023135276 @default.
- W2023135276 citedByCount "5" @default.
- W2023135276 crossrefType "journal-article" @default.
- W2023135276 hasAuthorship W2023135276A5003733759 @default.
- W2023135276 hasConcept C114851261 @default.
- W2023135276 hasConcept C16568411 @default.
- W2023135276 hasConcept C169760540 @default.
- W2023135276 hasConcept C185592680 @default.
- W2023135276 hasConcept C22894154 @default.
- W2023135276 hasConcept C2780035454 @default.
- W2023135276 hasConcept C382228 @default.
- W2023135276 hasConcept C39920043 @default.
- W2023135276 hasConcept C54355233 @default.
- W2023135276 hasConcept C55493867 @default.
- W2023135276 hasConcept C71924100 @default.
- W2023135276 hasConcept C86803240 @default.
- W2023135276 hasConcept C98274493 @default.
- W2023135276 hasConceptScore W2023135276C114851261 @default.
- W2023135276 hasConceptScore W2023135276C16568411 @default.
- W2023135276 hasConceptScore W2023135276C169760540 @default.
- W2023135276 hasConceptScore W2023135276C185592680 @default.
- W2023135276 hasConceptScore W2023135276C22894154 @default.
- W2023135276 hasConceptScore W2023135276C2780035454 @default.
- W2023135276 hasConceptScore W2023135276C382228 @default.
- W2023135276 hasConceptScore W2023135276C39920043 @default.
- W2023135276 hasConceptScore W2023135276C54355233 @default.
- W2023135276 hasConceptScore W2023135276C55493867 @default.
- W2023135276 hasConceptScore W2023135276C71924100 @default.
- W2023135276 hasConceptScore W2023135276C86803240 @default.
- W2023135276 hasConceptScore W2023135276C98274493 @default.
- W2023135276 hasIssue "S1" @default.
- W2023135276 hasLocation W20231352761 @default.
- W2023135276 hasLocation W20231352762 @default.
- W2023135276 hasOpenAccess W2023135276 @default.
- W2023135276 hasPrimaryLocation W20231352761 @default.
- W2023135276 hasRelatedWork W1967915239 @default.
- W2023135276 hasRelatedWork W2003122969 @default.
- W2023135276 hasRelatedWork W2007876616 @default.
- W2023135276 hasRelatedWork W2011327492 @default.
- W2023135276 hasRelatedWork W2012292223 @default.
- W2023135276 hasRelatedWork W2091926746 @default.
- W2023135276 hasRelatedWork W2098585473 @default.
- W2023135276 hasRelatedWork W2438771022 @default.
- W2023135276 hasRelatedWork W2795767678 @default.
- W2023135276 hasRelatedWork W3142546819 @default.
- W2023135276 hasVolume "34" @default.
- W2023135276 isParatext "false" @default.
- W2023135276 isRetracted "false" @default.
- W2023135276 magId "2023135276" @default.
- W2023135276 workType "article" @default.