Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023141917> ?p ?o ?g. }
- W2023141917 endingPage "98" @default.
- W2023141917 startingPage "84" @default.
- W2023141917 abstract "The mass transfer kinetics of a few compounds (uracil, 112 Da), insulin (5.5 kDa), lysozyme (13.4 kDa), and bovine serum albumin (BSA, 67 kDa) in columns packed with several types of spherical particles was investigated under non-retained conditions, in order to eliminate the poorly known contribution of surface diffusion to overall sample diffusivity across the porous particles in RPLC. Diffusivity across particles is then minimum. Based on the porosity of the particles accessible to analytes, it was accurately estimated from the elution times, the internal obstruction factor (using Pismen correlation), and the hindrance diffusion factor (using Renkin correlation). The columns used were packed with fully porous particles 2.5 μm Luna-C18 100 Å, core–shell particles 2.6 μm Kinetex-C18 100 Å, 3.6 μm Aeris Widepore-C18 200 Å, and prototype 2.7 μm core–shell particles (made of two concentric porous shells with 100 and 300 Å average pore size, respectively), and with 3.3 μm non-porous silica particles. The results demonstrate that the porous particle structure and the solid–liquid mass transfer resistance have practically no effect on the column efficiency for small molecules. For them, the column performance depends principally on eddy dispersion (packing homogeneity), to a lesser degree on longitudinal diffusion (effective sample diffusivity along the packed bed), and only slightly on the solid–liquid mass transfer resistance (sample diffusivity across the particle). In contrast, for proteins, this third HETP contribution, hence the porous particle structure, together with eddy dispersion govern the kinetic performance of columns. Mass transfer kinetics of proteins was observed to be fastest for columns packed with core–shell particles having either a large core-to-particle ratio or having a second, external, shell made of a thin porous layer with large mesopores (200–300 Å) and a high porosity (≃0.5–0.7). The structure of this external shell seems to speed up the penetration of proteins into the particles. A stochastic model of the penetration of bulky proteins driven by a concentration gradient across an infinitely thin membrane of known porosity and pore size is suggested to explain this mechanism. Yet, under retained conditions, surface diffusion speeds up the mass transfer into the mesopores and levels the kinetic performance of particles built with either one or two porous shells." @default.
- W2023141917 created "2016-06-24" @default.
- W2023141917 creator A5007331593 @default.
- W2023141917 creator A5038183935 @default.
- W2023141917 creator A5089250649 @default.
- W2023141917 date "2012-11-01" @default.
- W2023141917 modified "2023-10-14" @default.
- W2023141917 title "How changing the particle structure can speed up protein mass transfer kinetics in liquid chromatography" @default.
- W2023141917 cites W190195906 @default.
- W2023141917 cites W1964170594 @default.
- W2023141917 cites W1964868049 @default.
- W2023141917 cites W1966938171 @default.
- W2023141917 cites W1970212394 @default.
- W2023141917 cites W1973728711 @default.
- W2023141917 cites W1976808942 @default.
- W2023141917 cites W1977057498 @default.
- W2023141917 cites W1977727419 @default.
- W2023141917 cites W1979431647 @default.
- W2023141917 cites W1983745316 @default.
- W2023141917 cites W1985839634 @default.
- W2023141917 cites W1990306069 @default.
- W2023141917 cites W1991032442 @default.
- W2023141917 cites W1995382473 @default.
- W2023141917 cites W1998409039 @default.
- W2023141917 cites W1999704880 @default.
- W2023141917 cites W2000148825 @default.
- W2023141917 cites W2004959091 @default.
- W2023141917 cites W2005860568 @default.
- W2023141917 cites W2007087690 @default.
- W2023141917 cites W2016456715 @default.
- W2023141917 cites W2018799518 @default.
- W2023141917 cites W2019172873 @default.
- W2023141917 cites W2020520610 @default.
- W2023141917 cites W2022588205 @default.
- W2023141917 cites W2024676137 @default.
- W2023141917 cites W2026847033 @default.
- W2023141917 cites W2033687942 @default.
- W2023141917 cites W2034649159 @default.
- W2023141917 cites W2036598311 @default.
- W2023141917 cites W2036833182 @default.
- W2023141917 cites W2038413380 @default.
- W2023141917 cites W2039192318 @default.
- W2023141917 cites W2039508288 @default.
- W2023141917 cites W2039900269 @default.
- W2023141917 cites W2046123646 @default.
- W2023141917 cites W2050464047 @default.
- W2023141917 cites W2053161495 @default.
- W2023141917 cites W2053818539 @default.
- W2023141917 cites W2066062963 @default.
- W2023141917 cites W2067084431 @default.
- W2023141917 cites W2074662330 @default.
- W2023141917 cites W2076311332 @default.
- W2023141917 cites W2076602036 @default.
- W2023141917 cites W2078550111 @default.
- W2023141917 cites W2087564168 @default.
- W2023141917 cites W2087650593 @default.
- W2023141917 cites W2092756647 @default.
- W2023141917 cites W2138932566 @default.
- W2023141917 cites W2167984080 @default.
- W2023141917 cites W2194938232 @default.
- W2023141917 cites W4297089397 @default.
- W2023141917 doi "https://doi.org/10.1016/j.chroma.2012.09.030" @default.
- W2023141917 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23040978" @default.
- W2023141917 hasPublicationYear "2012" @default.
- W2023141917 type Work @default.
- W2023141917 sameAs 2023141917 @default.
- W2023141917 citedByCount "37" @default.
- W2023141917 countsByYear W20231419172012 @default.
- W2023141917 countsByYear W20231419172013 @default.
- W2023141917 countsByYear W20231419172014 @default.
- W2023141917 countsByYear W20231419172015 @default.
- W2023141917 countsByYear W20231419172016 @default.
- W2023141917 countsByYear W20231419172017 @default.
- W2023141917 countsByYear W20231419172018 @default.
- W2023141917 countsByYear W20231419172019 @default.
- W2023141917 countsByYear W20231419172020 @default.
- W2023141917 countsByYear W20231419172021 @default.
- W2023141917 countsByYear W20231419172022 @default.
- W2023141917 countsByYear W20231419172023 @default.
- W2023141917 crossrefType "journal-article" @default.
- W2023141917 hasAuthorship W2023141917A5007331593 @default.
- W2023141917 hasAuthorship W2023141917A5038183935 @default.
- W2023141917 hasAuthorship W2023141917A5089250649 @default.
- W2023141917 hasConcept C101555633 @default.
- W2023141917 hasConcept C104196234 @default.
- W2023141917 hasConcept C111368507 @default.
- W2023141917 hasConcept C113196181 @default.
- W2023141917 hasConcept C121332964 @default.
- W2023141917 hasConcept C127313418 @default.
- W2023141917 hasConcept C147789679 @default.
- W2023141917 hasConcept C148898269 @default.
- W2023141917 hasConcept C172331833 @default.
- W2023141917 hasConcept C178790620 @default.
- W2023141917 hasConcept C185592680 @default.
- W2023141917 hasConcept C187530423 @default.
- W2023141917 hasConcept C196558001 @default.
- W2023141917 hasConcept C2778517922 @default.
- W2023141917 hasConcept C37668627 @default.