Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023146008> ?p ?o ?g. }
- W2023146008 endingPage "e11034" @default.
- W2023146008 startingPage "e11034" @default.
- W2023146008 abstract "There is considerable interest in the high-throughput discovery and genotyping of single nucleotide polymorphisms (SNPs) to accelerate genetic mapping and enable association studies. This study provides an assessment of EST-derived and resequencing-derived SNP quality in maritime pine (Pinus pinaster Ait.), a conifer characterized by a huge genome size ( approximately 23.8 Gb/C).A 384-SNPs GoldenGate genotyping array was built from i/ 184 SNPs originally detected in a set of 40 re-sequenced candidate genes (in vitro SNPs), chosen on the basis of functionality scores, presence of neighboring polymorphisms, minor allele frequencies and linkage disequilibrium and ii/ 200 SNPs screened from ESTs (in silico SNPs) selected based on the number of ESTs used for SNP detection, the SNP minor allele frequency and the quality of SNP flanking sequences. The global success rate of the assay was 66.9%, and a conversion rate (considering only polymorphic SNPs) of 51% was achieved. In vitro SNPs showed significantly higher genotyping-success and conversion rates than in silico SNPs (+11.5% and +18.5%, respectively). The reproducibility was 100%, and the genotyping error rate very low (0.54%, dropping down to 0.06% when removing four SNPs showing elevated error rates).This study demonstrates that ESTs provide a resource for SNP identification in non-model species, which do not require any additional bench work and little bio-informatics analysis. However, the time and cost benefits of in silico SNPs are counterbalanced by a lower conversion rate than in vitro SNPs. This drawback is acceptable for population-based experiments, but could be dramatic in experiments involving samples from narrow genetic backgrounds. In addition, we showed that both the visual inspection of genotyping clusters and the estimation of a per SNP error rate should help identify markers that are not suitable to the GoldenGate technology in species characterized by a large and complex genome." @default.
- W2023146008 created "2016-06-24" @default.
- W2023146008 creator A5017979336 @default.
- W2023146008 creator A5018800346 @default.
- W2023146008 creator A5027673381 @default.
- W2023146008 creator A5032426574 @default.
- W2023146008 creator A5058216144 @default.
- W2023146008 creator A5079594203 @default.
- W2023146008 creator A5084653019 @default.
- W2023146008 creator A5086424837 @default.
- W2023146008 date "2010-06-09" @default.
- W2023146008 modified "2023-10-10" @default.
- W2023146008 title "In Vitro vs In Silico Detected SNPs for the Development of a Genotyping Array: What Can We Learn from a Non-Model Species?" @default.
- W2023146008 cites W1528782506 @default.
- W2023146008 cites W1929950720 @default.
- W2023146008 cites W1963666037 @default.
- W2023146008 cites W196951419 @default.
- W2023146008 cites W1970123450 @default.
- W2023146008 cites W1975921811 @default.
- W2023146008 cites W1980519002 @default.
- W2023146008 cites W1981981738 @default.
- W2023146008 cites W1982335109 @default.
- W2023146008 cites W1982471333 @default.
- W2023146008 cites W1995061033 @default.
- W2023146008 cites W1995826441 @default.
- W2023146008 cites W1997051164 @default.
- W2023146008 cites W2000769576 @default.
- W2023146008 cites W2019565773 @default.
- W2023146008 cites W2024267714 @default.
- W2023146008 cites W2027748690 @default.
- W2023146008 cites W2028067975 @default.
- W2023146008 cites W2031296193 @default.
- W2023146008 cites W2032415634 @default.
- W2023146008 cites W2037809606 @default.
- W2023146008 cites W2055043387 @default.
- W2023146008 cites W2057613402 @default.
- W2023146008 cites W2063905531 @default.
- W2023146008 cites W2071199144 @default.
- W2023146008 cites W2072038834 @default.
- W2023146008 cites W2075817679 @default.
- W2023146008 cites W2078102141 @default.
- W2023146008 cites W2084893171 @default.
- W2023146008 cites W2091340518 @default.
- W2023146008 cites W2092341189 @default.
- W2023146008 cites W2093779882 @default.
- W2023146008 cites W2097893031 @default.
- W2023146008 cites W2098272611 @default.
- W2023146008 cites W2103090173 @default.
- W2023146008 cites W2104705067 @default.
- W2023146008 cites W2114847949 @default.
- W2023146008 cites W2124861078 @default.
- W2023146008 cites W2125439994 @default.
- W2023146008 cites W2126017856 @default.
- W2023146008 cites W2129824114 @default.
- W2023146008 cites W2130562173 @default.
- W2023146008 cites W2136520538 @default.
- W2023146008 cites W2137036811 @default.
- W2023146008 cites W2137201283 @default.
- W2023146008 cites W2154603539 @default.
- W2023146008 cites W2158295184 @default.
- W2023146008 cites W2158987476 @default.
- W2023146008 cites W2162933903 @default.
- W2023146008 doi "https://doi.org/10.1371/journal.pone.0011034" @default.
- W2023146008 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2882948" @default.
- W2023146008 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20543950" @default.
- W2023146008 hasPublicationYear "2010" @default.
- W2023146008 type Work @default.
- W2023146008 sameAs 2023146008 @default.
- W2023146008 citedByCount "58" @default.
- W2023146008 countsByYear W20231460082012 @default.
- W2023146008 countsByYear W20231460082013 @default.
- W2023146008 countsByYear W20231460082014 @default.
- W2023146008 countsByYear W20231460082015 @default.
- W2023146008 countsByYear W20231460082016 @default.
- W2023146008 countsByYear W20231460082017 @default.
- W2023146008 countsByYear W20231460082019 @default.
- W2023146008 countsByYear W20231460082020 @default.
- W2023146008 countsByYear W20231460082021 @default.
- W2023146008 countsByYear W20231460082022 @default.
- W2023146008 countsByYear W20231460082023 @default.
- W2023146008 crossrefType "journal-article" @default.
- W2023146008 hasAuthorship W2023146008A5017979336 @default.
- W2023146008 hasAuthorship W2023146008A5018800346 @default.
- W2023146008 hasAuthorship W2023146008A5027673381 @default.
- W2023146008 hasAuthorship W2023146008A5032426574 @default.
- W2023146008 hasAuthorship W2023146008A5058216144 @default.
- W2023146008 hasAuthorship W2023146008A5079594203 @default.
- W2023146008 hasAuthorship W2023146008A5084653019 @default.
- W2023146008 hasAuthorship W2023146008A5086424837 @default.
- W2023146008 hasBestOaLocation W20231460081 @default.
- W2023146008 hasConcept C104317684 @default.
- W2023146008 hasConcept C122060243 @default.
- W2023146008 hasConcept C135763542 @default.
- W2023146008 hasConcept C139275648 @default.
- W2023146008 hasConcept C153209595 @default.
- W2023146008 hasConcept C157410074 @default.
- W2023146008 hasConcept C163691529 @default.
- W2023146008 hasConcept C2775905019 @default.