Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023152148> ?p ?o ?g. }
- W2023152148 endingPage "1549" @default.
- W2023152148 startingPage "1538" @default.
- W2023152148 abstract "We consider a class of Cohen-Grossberg neural networks with delays. We prove the existence and global asymptotic stability of an equilibrium point and estimate the region of existence. Furthermore, we show that the trajectories of the neural networks with positive initial data will stay in the positive region if the amplification function satisfies a divergent condition. We also establish the existence of a globally attracting compact set for more general networks. We estimate this compact set explicitly in terms of the network parameters from physiological and biological models. Our results can be applied to neural networks with a wide range of activation functions which are neither bounded nor globally Lipschitz continuous such as the Lotka-Volterra model. We also give some examples and simulations." @default.
- W2023152148 created "2016-06-24" @default.
- W2023152148 creator A5015741637 @default.
- W2023152148 creator A5054239457 @default.
- W2023152148 creator A5056808064 @default.
- W2023152148 date "2006-12-01" @default.
- W2023152148 modified "2023-09-26" @default.
- W2023152148 title "Global attraction and stability for Cohen–Grossberg neural networks with delays" @default.
- W2023152148 cites W1973024930 @default.
- W2023152148 cites W1973151461 @default.
- W2023152148 cites W1995572708 @default.
- W2023152148 cites W2013733161 @default.
- W2023152148 cites W2014549417 @default.
- W2023152148 cites W2025038026 @default.
- W2023152148 cites W2039070048 @default.
- W2023152148 cites W2055606008 @default.
- W2023152148 cites W2062210787 @default.
- W2023152148 cites W2064924023 @default.
- W2023152148 cites W2070360563 @default.
- W2023152148 cites W2073149246 @default.
- W2023152148 cites W2084820442 @default.
- W2023152148 cites W2086947275 @default.
- W2023152148 cites W2089808022 @default.
- W2023152148 cites W2097886556 @default.
- W2023152148 cites W2099906213 @default.
- W2023152148 cites W2101928083 @default.
- W2023152148 cites W2121752938 @default.
- W2023152148 cites W2146614799 @default.
- W2023152148 cites W2160121923 @default.
- W2023152148 cites W2161359900 @default.
- W2023152148 cites W2166588786 @default.
- W2023152148 cites W2168904237 @default.
- W2023152148 cites W4230789802 @default.
- W2023152148 doi "https://doi.org/10.1016/j.neunet.2006.07.006" @default.
- W2023152148 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17011163" @default.
- W2023152148 hasPublicationYear "2006" @default.
- W2023152148 type Work @default.
- W2023152148 sameAs 2023152148 @default.
- W2023152148 citedByCount "51" @default.
- W2023152148 countsByYear W20231521482012 @default.
- W2023152148 countsByYear W20231521482013 @default.
- W2023152148 countsByYear W20231521482014 @default.
- W2023152148 countsByYear W20231521482015 @default.
- W2023152148 countsByYear W20231521482016 @default.
- W2023152148 countsByYear W20231521482018 @default.
- W2023152148 countsByYear W20231521482022 @default.
- W2023152148 countsByYear W20231521482023 @default.
- W2023152148 crossrefType "journal-article" @default.
- W2023152148 hasAuthorship W2023152148A5015741637 @default.
- W2023152148 hasAuthorship W2023152148A5054239457 @default.
- W2023152148 hasAuthorship W2023152148A5056808064 @default.
- W2023152148 hasConcept C112972136 @default.
- W2023152148 hasConcept C119857082 @default.
- W2023152148 hasConcept C121332964 @default.
- W2023152148 hasConcept C134306372 @default.
- W2023152148 hasConcept C14036430 @default.
- W2023152148 hasConcept C154945302 @default.
- W2023152148 hasConcept C158622935 @default.
- W2023152148 hasConcept C159985019 @default.
- W2023152148 hasConcept C167964875 @default.
- W2023152148 hasConcept C177264268 @default.
- W2023152148 hasConcept C18648836 @default.
- W2023152148 hasConcept C192562407 @default.
- W2023152148 hasConcept C199360897 @default.
- W2023152148 hasConcept C202444582 @default.
- W2023152148 hasConcept C204323151 @default.
- W2023152148 hasConcept C22324862 @default.
- W2023152148 hasConcept C2775924081 @default.
- W2023152148 hasConcept C2777212361 @default.
- W2023152148 hasConcept C28826006 @default.
- W2023152148 hasConcept C33923547 @default.
- W2023152148 hasConcept C34388435 @default.
- W2023152148 hasConcept C38365724 @default.
- W2023152148 hasConcept C41008148 @default.
- W2023152148 hasConcept C47446073 @default.
- W2023152148 hasConcept C50644808 @default.
- W2023152148 hasConcept C62520636 @default.
- W2023152148 hasConcept C78045399 @default.
- W2023152148 hasConcept C78458016 @default.
- W2023152148 hasConcept C86803240 @default.
- W2023152148 hasConcept C94766913 @default.
- W2023152148 hasConceptScore W2023152148C112972136 @default.
- W2023152148 hasConceptScore W2023152148C119857082 @default.
- W2023152148 hasConceptScore W2023152148C121332964 @default.
- W2023152148 hasConceptScore W2023152148C134306372 @default.
- W2023152148 hasConceptScore W2023152148C14036430 @default.
- W2023152148 hasConceptScore W2023152148C154945302 @default.
- W2023152148 hasConceptScore W2023152148C158622935 @default.
- W2023152148 hasConceptScore W2023152148C159985019 @default.
- W2023152148 hasConceptScore W2023152148C167964875 @default.
- W2023152148 hasConceptScore W2023152148C177264268 @default.
- W2023152148 hasConceptScore W2023152148C18648836 @default.
- W2023152148 hasConceptScore W2023152148C192562407 @default.
- W2023152148 hasConceptScore W2023152148C199360897 @default.
- W2023152148 hasConceptScore W2023152148C202444582 @default.
- W2023152148 hasConceptScore W2023152148C204323151 @default.
- W2023152148 hasConceptScore W2023152148C22324862 @default.
- W2023152148 hasConceptScore W2023152148C2775924081 @default.