Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023155255> ?p ?o ?g. }
- W2023155255 endingPage "937" @default.
- W2023155255 startingPage "929" @default.
- W2023155255 abstract "Accurate estimation of site productivity is crucial for sustainable forest resource management. In recent years, a variety of modelling approaches have been developed and applied to predict site index from a wide range of environmental variables, with varying success. The selection, application and comparison of suitable modelling techniques remains therefore a meticulous task, subject to ongoing research and debate. In this study, the performance of five modelling techniques was compared for the prediction of forest site index in two contrasting ecoregions: the temperate lowland of Flanders, Belgium, and the Mediterranean mountains in SW Turkey. The modelling techniques include statistical (multiple linear regression – MLR, classification and regression trees – CART, generalized additive models – GAM), as well as machine-learning (artificial neural networks – ANN) and hybrid techniques (boosted regression trees – BRT). Although the selected predictor variables differed largely, with mainly topographic predictor variables in the mountain area versus soil and humus variables in the lowland area, the techniques performed comparatively similar in both ecoregions. Stochastic multicriteria acceptability analysis (SMAA) was found a well-suited multicriteria evaluation method to evaluate the performance of the modelling techniques. It has been applied on the individual species models of Flanders, as well as a species-independent evaluation, combining all developed models from the two contrasting ecoregions. We came to the conclusion that non-parametric models are better suited for predicting site index than traditional MLR. GAM and BRT are the preferred alternatives for a wide range of weight preferences. CART is preferred when very high weight is given to user-friendliness, whereas ANN is recommended when most weight is given to pure predictive performance." @default.
- W2023155255 created "2016-06-24" @default.
- W2023155255 creator A5006047475 @default.
- W2023155255 creator A5015040477 @default.
- W2023155255 creator A5032972292 @default.
- W2023155255 creator A5080731536 @default.
- W2023155255 date "2011-07-01" @default.
- W2023155255 modified "2023-09-30" @default.
- W2023155255 title "Evaluation of modelling techniques for forest site productivity prediction in contrasting ecoregions using stochastic multicriteria acceptability analysis (SMAA)" @default.
- W2023155255 cites W1514168264 @default.
- W2023155255 cites W1838542636 @default.
- W2023155255 cites W1964396812 @default.
- W2023155255 cites W1966434644 @default.
- W2023155255 cites W1970534245 @default.
- W2023155255 cites W1988999326 @default.
- W2023155255 cites W1994732212 @default.
- W2023155255 cites W1999659160 @default.
- W2023155255 cites W2002758482 @default.
- W2023155255 cites W2004820890 @default.
- W2023155255 cites W2015966240 @default.
- W2023155255 cites W2022222780 @default.
- W2023155255 cites W2026257972 @default.
- W2023155255 cites W2033976367 @default.
- W2023155255 cites W2034209315 @default.
- W2023155255 cites W2044481392 @default.
- W2023155255 cites W2047214450 @default.
- W2023155255 cites W2049915350 @default.
- W2023155255 cites W2052982604 @default.
- W2023155255 cites W2060298585 @default.
- W2023155255 cites W2064971197 @default.
- W2023155255 cites W2067084062 @default.
- W2023155255 cites W2077247838 @default.
- W2023155255 cites W2099571665 @default.
- W2023155255 cites W2101703201 @default.
- W2023155255 cites W2112315008 @default.
- W2023155255 cites W2118579327 @default.
- W2023155255 cites W2120160157 @default.
- W2023155255 cites W2135695572 @default.
- W2023155255 cites W2139525108 @default.
- W2023155255 cites W2149160185 @default.
- W2023155255 cites W2161149459 @default.
- W2023155255 cites W2168213791 @default.
- W2023155255 cites W30105436 @default.
- W2023155255 doi "https://doi.org/10.1016/j.envsoft.2011.01.003" @default.
- W2023155255 hasPublicationYear "2011" @default.
- W2023155255 type Work @default.
- W2023155255 sameAs 2023155255 @default.
- W2023155255 citedByCount "72" @default.
- W2023155255 countsByYear W20231552552012 @default.
- W2023155255 countsByYear W20231552552013 @default.
- W2023155255 countsByYear W20231552552014 @default.
- W2023155255 countsByYear W20231552552015 @default.
- W2023155255 countsByYear W20231552552016 @default.
- W2023155255 countsByYear W20231552552017 @default.
- W2023155255 countsByYear W20231552552018 @default.
- W2023155255 countsByYear W20231552552019 @default.
- W2023155255 countsByYear W20231552552020 @default.
- W2023155255 countsByYear W20231552552021 @default.
- W2023155255 countsByYear W20231552552022 @default.
- W2023155255 countsByYear W20231552552023 @default.
- W2023155255 crossrefType "journal-article" @default.
- W2023155255 hasAuthorship W2023155255A5006047475 @default.
- W2023155255 hasAuthorship W2023155255A5015040477 @default.
- W2023155255 hasAuthorship W2023155255A5032972292 @default.
- W2023155255 hasAuthorship W2023155255A5080731536 @default.
- W2023155255 hasBestOaLocation W20231552552 @default.
- W2023155255 hasConcept C105795698 @default.
- W2023155255 hasConcept C119857082 @default.
- W2023155255 hasConcept C127413603 @default.
- W2023155255 hasConcept C136764020 @default.
- W2023155255 hasConcept C146978453 @default.
- W2023155255 hasConcept C152877465 @default.
- W2023155255 hasConcept C169258074 @default.
- W2023155255 hasConcept C204323151 @default.
- W2023155255 hasConcept C205649164 @default.
- W2023155255 hasConcept C2775882201 @default.
- W2023155255 hasConcept C2777382242 @default.
- W2023155255 hasConcept C33923547 @default.
- W2023155255 hasConcept C41008148 @default.
- W2023155255 hasConcept C45804977 @default.
- W2023155255 hasConcept C48921125 @default.
- W2023155255 hasConcept C81917197 @default.
- W2023155255 hasConcept C84525736 @default.
- W2023155255 hasConcept C97137747 @default.
- W2023155255 hasConceptScore W2023155255C105795698 @default.
- W2023155255 hasConceptScore W2023155255C119857082 @default.
- W2023155255 hasConceptScore W2023155255C127413603 @default.
- W2023155255 hasConceptScore W2023155255C136764020 @default.
- W2023155255 hasConceptScore W2023155255C146978453 @default.
- W2023155255 hasConceptScore W2023155255C152877465 @default.
- W2023155255 hasConceptScore W2023155255C169258074 @default.
- W2023155255 hasConceptScore W2023155255C204323151 @default.
- W2023155255 hasConceptScore W2023155255C205649164 @default.
- W2023155255 hasConceptScore W2023155255C2775882201 @default.
- W2023155255 hasConceptScore W2023155255C2777382242 @default.
- W2023155255 hasConceptScore W2023155255C33923547 @default.
- W2023155255 hasConceptScore W2023155255C41008148 @default.
- W2023155255 hasConceptScore W2023155255C45804977 @default.