Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023160186> ?p ?o ?g. }
- W2023160186 endingPage "1182" @default.
- W2023160186 startingPage "1182" @default.
- W2023160186 abstract "The multitude of biofuels in use and their widely different characteristics stress the need for improved characterisation of their chemical and physical properties. Industrial use of biofuels further demands rapid characterisation methods suitable for on-line measurements. The single most important property in biofuels is the calorific value. This is influenced by moisture and ash content as well as the chemical composition of the dry biomass. Near infrared (NIR) spectroscopy and bi-orthogonal partial least squares (BPLS) regression were used to model moisture and ash content as well as gross calorific value in ground samples of stem and branches wood. Samples from 16 individual trees of Norway spruce were artificially moistened into five classes (10, 20, 30, 40 and 50%). Three different models for decomposition of the spectral variation into structure and noise were applied. In total 16 BPLS models were used, all of which showed high accuracy in prediction for a test set and they explained 95.4-99.8% of the reference variable variation. The models for moisture content were spanned by the O-H and C-H overtones, i.e. between water and organic matter. The models for ash content appeared to be based on interactions in carbon chains. For calorific value the models was spanned by C-H stretching, by O-H stretching and bending and by combinations of O-H and C-O stretching. Also -C=C- bonds contributed in the prediction of calorific value. This study illustrates the possibility of using the NIR technique in combination with multivariate calibration to predict economically important properties of biofuels and to interpret models. This concept may also be applied for on-line prediction in processes to standardize biofuels or in biofuelled plants for process monitoring." @default.
- W2023160186 created "2016-06-24" @default.
- W2023160186 creator A5006827330 @default.
- W2023160186 creator A5091627070 @default.
- W2023160186 date "2005-01-01" @default.
- W2023160186 modified "2023-09-24" @default.
- W2023160186 title "Multivariate NIR spectroscopy models for moisture, ash and calorific content in biofuels using bi-orthogonal partial least squares regression" @default.
- W2023160186 cites W1539821498 @default.
- W2023160186 cites W1888540468 @default.
- W2023160186 cites W1972429044 @default.
- W2023160186 cites W1973625927 @default.
- W2023160186 cites W1976251851 @default.
- W2023160186 cites W1977660832 @default.
- W2023160186 cites W1999853225 @default.
- W2023160186 cites W2000615064 @default.
- W2023160186 cites W2003542821 @default.
- W2023160186 cites W2011718881 @default.
- W2023160186 cites W2013005723 @default.
- W2023160186 cites W2014927800 @default.
- W2023160186 cites W2021337450 @default.
- W2023160186 cites W2024165052 @default.
- W2023160186 cites W2028717280 @default.
- W2023160186 cites W2042131500 @default.
- W2023160186 cites W2042810309 @default.
- W2023160186 cites W2043747435 @default.
- W2023160186 cites W2049154504 @default.
- W2023160186 cites W2076447206 @default.
- W2023160186 cites W2076991518 @default.
- W2023160186 cites W2084167732 @default.
- W2023160186 cites W2087225618 @default.
- W2023160186 cites W2087504284 @default.
- W2023160186 cites W2135043335 @default.
- W2023160186 cites W2139764622 @default.
- W2023160186 cites W2158863190 @default.
- W2023160186 cites W4246630006 @default.
- W2023160186 doi "https://doi.org/10.1039/b500103j" @default.
- W2023160186 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16021218" @default.
- W2023160186 hasPublicationYear "2005" @default.
- W2023160186 type Work @default.
- W2023160186 sameAs 2023160186 @default.
- W2023160186 citedByCount "107" @default.
- W2023160186 countsByYear W20231601862012 @default.
- W2023160186 countsByYear W20231601862013 @default.
- W2023160186 countsByYear W20231601862014 @default.
- W2023160186 countsByYear W20231601862015 @default.
- W2023160186 countsByYear W20231601862016 @default.
- W2023160186 countsByYear W20231601862017 @default.
- W2023160186 countsByYear W20231601862018 @default.
- W2023160186 countsByYear W20231601862019 @default.
- W2023160186 countsByYear W20231601862020 @default.
- W2023160186 countsByYear W20231601862021 @default.
- W2023160186 countsByYear W20231601862022 @default.
- W2023160186 countsByYear W20231601862023 @default.
- W2023160186 crossrefType "journal-article" @default.
- W2023160186 hasAuthorship W2023160186A5006827330 @default.
- W2023160186 hasAuthorship W2023160186A5091627070 @default.
- W2023160186 hasConcept C105795698 @default.
- W2023160186 hasConcept C105923489 @default.
- W2023160186 hasConcept C107872376 @default.
- W2023160186 hasConcept C113196181 @default.
- W2023160186 hasConcept C115540264 @default.
- W2023160186 hasConcept C121332964 @default.
- W2023160186 hasConcept C127413603 @default.
- W2023160186 hasConcept C150903083 @default.
- W2023160186 hasConcept C156383657 @default.
- W2023160186 hasConcept C161584116 @default.
- W2023160186 hasConcept C176864760 @default.
- W2023160186 hasConcept C178790620 @default.
- W2023160186 hasConcept C185592680 @default.
- W2023160186 hasConcept C187320778 @default.
- W2023160186 hasConcept C22354355 @default.
- W2023160186 hasConcept C24939127 @default.
- W2023160186 hasConcept C32891209 @default.
- W2023160186 hasConcept C33923547 @default.
- W2023160186 hasConcept C48921125 @default.
- W2023160186 hasConcept C53991642 @default.
- W2023160186 hasConcept C62520636 @default.
- W2023160186 hasConcept C6557445 @default.
- W2023160186 hasConcept C86803240 @default.
- W2023160186 hasConceptScore W2023160186C105795698 @default.
- W2023160186 hasConceptScore W2023160186C105923489 @default.
- W2023160186 hasConceptScore W2023160186C107872376 @default.
- W2023160186 hasConceptScore W2023160186C113196181 @default.
- W2023160186 hasConceptScore W2023160186C115540264 @default.
- W2023160186 hasConceptScore W2023160186C121332964 @default.
- W2023160186 hasConceptScore W2023160186C127413603 @default.
- W2023160186 hasConceptScore W2023160186C150903083 @default.
- W2023160186 hasConceptScore W2023160186C156383657 @default.
- W2023160186 hasConceptScore W2023160186C161584116 @default.
- W2023160186 hasConceptScore W2023160186C176864760 @default.
- W2023160186 hasConceptScore W2023160186C178790620 @default.
- W2023160186 hasConceptScore W2023160186C185592680 @default.
- W2023160186 hasConceptScore W2023160186C187320778 @default.
- W2023160186 hasConceptScore W2023160186C22354355 @default.
- W2023160186 hasConceptScore W2023160186C24939127 @default.
- W2023160186 hasConceptScore W2023160186C32891209 @default.
- W2023160186 hasConceptScore W2023160186C33923547 @default.
- W2023160186 hasConceptScore W2023160186C48921125 @default.