Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023161567> ?p ?o ?g. }
- W2023161567 endingPage "495" @default.
- W2023161567 startingPage "487" @default.
- W2023161567 abstract "With advances in high-throughput single-nucleotide polymorphism (SNP) genotyping, the amount of genotype data available for genetic studies is steadily increasing, and with it comes new abilities to study multigene interactions as well as to develop higher dimensional genetic models that more closely represent the polygenic nature of common disease risk. The combined impact of even small amounts of missing data on a multi-SNP analysis may be considerable. In this study, we present a neural network method for imputing missing SNP genotype data. We compared its imputation accuracy with fastPHASE and an expectation-maximization algorithm implemented in HelixTree. In a simulation data set of 1000 SNPs and 1000 subjects, 1, 5 and 10% of genotypes were randomly masked. Four levels of linkage disequilibrium (LD), LD R2<0.2, R2<0.5, R2<0.8 and no LD threshold, were examined to evaluate the impact of LD on imputation accuracy. All three methods are capable of imputing most missing genotypes accurately (accuracy >86%). The neural network method accurately predicted 92.0-95.9% of the missing genotypes. In a real data set comparison with 419 subjects and 126 SNPs from chromosome 2, the neural network method achieves the highest imputation accuracies >83.1% with missing rate from 1 to 5%. Using 90 HapMap subjects with 1962 SNPs, fastPHASE had the highest accuracy ( approximately 97%) while the other two methods had >95% accuracy. These results indicate that the neural network model is an accurate and convenient tool, requiring minimal parameter tuning for SNP data recovery, and provides a valuable alternative to usual complete-case analysis." @default.
- W2023161567 created "2016-06-24" @default.
- W2023161567 creator A5039284931 @default.
- W2023161567 creator A5042121948 @default.
- W2023161567 date "2008-01-16" @default.
- W2023161567 modified "2023-10-18" @default.
- W2023161567 title "Imputing missing genotypic data of single-nucleotide polymorphisms using neural networks" @default.
- W2023161567 cites W1513618424 @default.
- W2023161567 cites W1567512734 @default.
- W2023161567 cites W183625566 @default.
- W2023161567 cites W1981981738 @default.
- W2023161567 cites W1982220354 @default.
- W2023161567 cites W1985593448 @default.
- W2023161567 cites W2015408724 @default.
- W2023161567 cites W2021746604 @default.
- W2023161567 cites W2031296193 @default.
- W2023161567 cites W2037809606 @default.
- W2023161567 cites W2069420421 @default.
- W2023161567 cites W2074282020 @default.
- W2023161567 cites W2098721803 @default.
- W2023161567 cites W2099629766 @default.
- W2023161567 cites W2115837368 @default.
- W2023161567 cites W2117812871 @default.
- W2023161567 cites W2134599124 @default.
- W2023161567 cites W2137983211 @default.
- W2023161567 cites W2145758748 @default.
- W2023161567 cites W2152917223 @default.
- W2023161567 cites W2164212257 @default.
- W2023161567 cites W2168175751 @default.
- W2023161567 cites W2171669685 @default.
- W2023161567 cites W2607290897 @default.
- W2023161567 cites W4211101039 @default.
- W2023161567 cites W4242989628 @default.
- W2023161567 cites W4248601592 @default.
- W2023161567 doi "https://doi.org/10.1038/sj.ejhg.5201988" @default.
- W2023161567 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18197192" @default.
- W2023161567 hasPublicationYear "2008" @default.
- W2023161567 type Work @default.
- W2023161567 sameAs 2023161567 @default.
- W2023161567 citedByCount "34" @default.
- W2023161567 countsByYear W20231615672012 @default.
- W2023161567 countsByYear W20231615672013 @default.
- W2023161567 countsByYear W20231615672015 @default.
- W2023161567 countsByYear W20231615672019 @default.
- W2023161567 countsByYear W20231615672020 @default.
- W2023161567 countsByYear W20231615672021 @default.
- W2023161567 countsByYear W20231615672022 @default.
- W2023161567 countsByYear W20231615672023 @default.
- W2023161567 crossrefType "journal-article" @default.
- W2023161567 hasAuthorship W2023161567A5039284931 @default.
- W2023161567 hasAuthorship W2023161567A5042121948 @default.
- W2023161567 hasBestOaLocation W20231615671 @default.
- W2023161567 hasConcept C104317684 @default.
- W2023161567 hasConcept C105795698 @default.
- W2023161567 hasConcept C124101348 @default.
- W2023161567 hasConcept C135763542 @default.
- W2023161567 hasConcept C139275648 @default.
- W2023161567 hasConcept C153209595 @default.
- W2023161567 hasConcept C154945302 @default.
- W2023161567 hasConcept C157410074 @default.
- W2023161567 hasConcept C177580304 @default.
- W2023161567 hasConcept C31467283 @default.
- W2023161567 hasConcept C33923547 @default.
- W2023161567 hasConcept C35605836 @default.
- W2023161567 hasConcept C41008148 @default.
- W2023161567 hasConcept C50644808 @default.
- W2023161567 hasConcept C54355233 @default.
- W2023161567 hasConcept C55060382 @default.
- W2023161567 hasConcept C58041806 @default.
- W2023161567 hasConcept C58489278 @default.
- W2023161567 hasConcept C86803240 @default.
- W2023161567 hasConcept C9357733 @default.
- W2023161567 hasConceptScore W2023161567C104317684 @default.
- W2023161567 hasConceptScore W2023161567C105795698 @default.
- W2023161567 hasConceptScore W2023161567C124101348 @default.
- W2023161567 hasConceptScore W2023161567C135763542 @default.
- W2023161567 hasConceptScore W2023161567C139275648 @default.
- W2023161567 hasConceptScore W2023161567C153209595 @default.
- W2023161567 hasConceptScore W2023161567C154945302 @default.
- W2023161567 hasConceptScore W2023161567C157410074 @default.
- W2023161567 hasConceptScore W2023161567C177580304 @default.
- W2023161567 hasConceptScore W2023161567C31467283 @default.
- W2023161567 hasConceptScore W2023161567C33923547 @default.
- W2023161567 hasConceptScore W2023161567C35605836 @default.
- W2023161567 hasConceptScore W2023161567C41008148 @default.
- W2023161567 hasConceptScore W2023161567C50644808 @default.
- W2023161567 hasConceptScore W2023161567C54355233 @default.
- W2023161567 hasConceptScore W2023161567C55060382 @default.
- W2023161567 hasConceptScore W2023161567C58041806 @default.
- W2023161567 hasConceptScore W2023161567C58489278 @default.
- W2023161567 hasConceptScore W2023161567C86803240 @default.
- W2023161567 hasConceptScore W2023161567C9357733 @default.
- W2023161567 hasIssue "4" @default.
- W2023161567 hasLocation W20231615671 @default.
- W2023161567 hasLocation W20231615672 @default.
- W2023161567 hasOpenAccess W2023161567 @default.
- W2023161567 hasPrimaryLocation W20231615671 @default.
- W2023161567 hasRelatedWork W1588942077 @default.