Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023161810> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2023161810 endingPage "1379" @default.
- W2023161810 startingPage "1373" @default.
- W2023161810 abstract "This study proposes an efficient channel-estimation scheme for Multiband (MB) Orthogonal Frequency Division Multiplexing (OFDM)-based Ultra Wide Band (UWB) communication systems. One of the challenges in wireless system is the frequency selective fading caused due to multipath channel between the transmitter and receiver. The signal bandwidth in broad band cellular wireless systems typically exceeds the coherence bandwidth of the multipath channel. To overcome such a multipath fading environment with low complexity and to increase the performance, UWB OFDM system is used. To practically realize MB-OFDM UWB, one needs to cope with numerous design challenges, particularly in receiver designs such as symbol timing, Carrier Frequency Offset (CFO) and sampling frequency offset compensation, as well as Channel Frequency Response (CFR) estimation. A channel estimation scheme using a Takagi-Sugeno (T-S) fuzzy based neural network under the time varying velocity of the mobile station in a UWB OFDM system is proposed in this study. In our proposal, by utilizing the learning capability of Adaptive Neuro-Fuzzy Inference System (ANFIS), the ANFIS is trained with correct channel state information then the trained network is used as a channel estimator. To validate the performance of our proposed method, simulation results are given and found that it gives more accurate prediction of channel coefficients as compared with fuzzy channel estimator under various highly noisy multipath channel conditions." @default.
- W2023161810 created "2016-06-24" @default.
- W2023161810 creator A5024560658 @default.
- W2023161810 date "2014-08-01" @default.
- W2023161810 modified "2023-10-01" @default.
- W2023161810 title "NEURO FUZZY BASED PERFORMANCE ANALYSIS OF MULTIBAND ULTRA WIDE BAND ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING SYSTEM" @default.
- W2023161810 cites W1649659351 @default.
- W2023161810 cites W2091190815 @default.
- W2023161810 cites W2099660711 @default.
- W2023161810 cites W2103414828 @default.
- W2023161810 cites W2103643166 @default.
- W2023161810 cites W2114314876 @default.
- W2023161810 cites W2138722122 @default.
- W2023161810 cites W2141634761 @default.
- W2023161810 cites W2149012387 @default.
- W2023161810 cites W2149547360 @default.
- W2023161810 cites W2164253767 @default.
- W2023161810 cites W2164670389 @default.
- W2023161810 doi "https://doi.org/10.3844/jcssp.2014.1373.1379" @default.
- W2023161810 hasPublicationYear "2014" @default.
- W2023161810 type Work @default.
- W2023161810 sameAs 2023161810 @default.
- W2023161810 citedByCount "0" @default.
- W2023161810 crossrefType "journal-article" @default.
- W2023161810 hasAuthorship W2023161810A5024560658 @default.
- W2023161810 hasBestOaLocation W20231618101 @default.
- W2023161810 hasConcept C127162648 @default.
- W2023161810 hasConcept C127413603 @default.
- W2023161810 hasConcept C161218011 @default.
- W2023161810 hasConcept C24326235 @default.
- W2023161810 hasConcept C2776108382 @default.
- W2023161810 hasConcept C2776257435 @default.
- W2023161810 hasConcept C40409654 @default.
- W2023161810 hasConcept C41008148 @default.
- W2023161810 hasConcept C49319798 @default.
- W2023161810 hasConcept C76155785 @default.
- W2023161810 hasConcept C81978471 @default.
- W2023161810 hasConceptScore W2023161810C127162648 @default.
- W2023161810 hasConceptScore W2023161810C127413603 @default.
- W2023161810 hasConceptScore W2023161810C161218011 @default.
- W2023161810 hasConceptScore W2023161810C24326235 @default.
- W2023161810 hasConceptScore W2023161810C2776108382 @default.
- W2023161810 hasConceptScore W2023161810C2776257435 @default.
- W2023161810 hasConceptScore W2023161810C40409654 @default.
- W2023161810 hasConceptScore W2023161810C41008148 @default.
- W2023161810 hasConceptScore W2023161810C49319798 @default.
- W2023161810 hasConceptScore W2023161810C76155785 @default.
- W2023161810 hasConceptScore W2023161810C81978471 @default.
- W2023161810 hasIssue "8" @default.
- W2023161810 hasLocation W20231618101 @default.
- W2023161810 hasOpenAccess W2023161810 @default.
- W2023161810 hasPrimaryLocation W20231618101 @default.
- W2023161810 hasRelatedWork W2002356572 @default.
- W2023161810 hasRelatedWork W2089225132 @default.
- W2023161810 hasRelatedWork W2112086190 @default.
- W2023161810 hasRelatedWork W2113138890 @default.
- W2023161810 hasRelatedWork W2124158377 @default.
- W2023161810 hasRelatedWork W2147788077 @default.
- W2023161810 hasRelatedWork W2148026173 @default.
- W2023161810 hasRelatedWork W2149511431 @default.
- W2023161810 hasRelatedWork W2150736314 @default.
- W2023161810 hasRelatedWork W2150821750 @default.
- W2023161810 hasVolume "10" @default.
- W2023161810 isParatext "false" @default.
- W2023161810 isRetracted "false" @default.
- W2023161810 magId "2023161810" @default.
- W2023161810 workType "article" @default.