Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023163403> ?p ?o ?g. }
- W2023163403 endingPage "43" @default.
- W2023163403 startingPage "30" @default.
- W2023163403 abstract "Abstract It is difficult to measure pasture feed intake. A common method is based on naturally occurring, indigestible plant markers, such as long chain alkanes. Least-squares procedures are used to estimate diet composition and intake. If actual intake of a supplement is known, then total intake and the intake of all dietary components can be estimated. This ‘labelled-supplement’ approach requires an estimate of the faecal recoveries of the markers. The accuracy and precision of intake solutions for each animal is also affected by the sampling and measurement precision of the plant and faecal marker concentrations. This work was conducted to study whether weighting each marker's sums of squares in the least-squares procedure could be used to provide a more robust solution. Cluster and discriminant analyses of a plant marker database determined the contribution of each marker to discrimination between categories of plants. The markers’ cluster or discriminant weights were used to weight the sums of squares in the least squares procedures. The actual individual dry matter intakes (DMI) of 20 cattle were arbitrarily assigned for three different diets. Measurement and sampling variations in marker concentrations and/or faecal recoveries were simulated to generate predicted total pasture intakes around the actual values. Six marker weighting methods were compared for their DMI prediction error values and correlations between predicted and actual DMI: (A) all markers weighted by one; (B) separate cluster analyses of z scores for alkanes and alcohols; (C) combined cluster analyses for alkanes and alcohols; (D) discriminant analyses of z score marker data for plants categorized into grasses, legumes, shrubs and trees; (E) discriminant analyses of plants categorized on origin and plant, photosynthesis and reproduction type; and (F) discriminant analyses of plants categorized on plant, photosynthesis and reproduction type. The standard approach of weighting all markers by one (A) was satisfactory when marker concentration error was set at zero, however intake predictions were poor when the error was non-zero, which is likely. The weighted least-squares intake solutions that were more robust to variance in measured marker concentrations or in assumed faecal recovery rates were those using weights derived by methods D and F. Marker weights from Methods D, E and F resulted in similar intake prediction error variances and correlations. Methods E and F required more botanical information about plant species and method D was simpler, so method D is recommended rather than other methods studied here, including the standard method A. There are problems with using weights derived from an analysis of all published marker data, so better weighting methods may still be found for specific plant and marker datasets." @default.
- W2023163403 created "2016-06-24" @default.
- W2023163403 creator A5082402904 @default.
- W2023163403 creator A5084587766 @default.
- W2023163403 date "2014-01-01" @default.
- W2023163403 modified "2023-10-02" @default.
- W2023163403 title "Improving pasture intake predictions by variable weighting of plant marker concentrations" @default.
- W2023163403 cites W1891936209 @default.
- W2023163403 cites W1964252887 @default.
- W2023163403 cites W1965612527 @default.
- W2023163403 cites W1969415785 @default.
- W2023163403 cites W1992313525 @default.
- W2023163403 cites W1995336154 @default.
- W2023163403 cites W2006816715 @default.
- W2023163403 cites W2013636139 @default.
- W2023163403 cites W2017313556 @default.
- W2023163403 cites W2019424240 @default.
- W2023163403 cites W2023545992 @default.
- W2023163403 cites W2032306383 @default.
- W2023163403 cites W2036948906 @default.
- W2023163403 cites W2038256051 @default.
- W2023163403 cites W2046520022 @default.
- W2023163403 cites W2048611290 @default.
- W2023163403 cites W2064201667 @default.
- W2023163403 cites W2069550034 @default.
- W2023163403 cites W2080585965 @default.
- W2023163403 cites W2084783272 @default.
- W2023163403 cites W2086541077 @default.
- W2023163403 cites W2097358446 @default.
- W2023163403 cites W2102446018 @default.
- W2023163403 cites W2103791579 @default.
- W2023163403 cites W2110243713 @default.
- W2023163403 cites W2110544385 @default.
- W2023163403 cites W2111785070 @default.
- W2023163403 cites W2118947229 @default.
- W2023163403 cites W2120393614 @default.
- W2023163403 cites W2124448602 @default.
- W2023163403 cites W2128841477 @default.
- W2023163403 cites W2136619438 @default.
- W2023163403 cites W2141234015 @default.
- W2023163403 cites W2145792663 @default.
- W2023163403 cites W2162047814 @default.
- W2023163403 cites W2164179392 @default.
- W2023163403 cites W2166624878 @default.
- W2023163403 cites W2174680105 @default.
- W2023163403 cites W2509890875 @default.
- W2023163403 cites W2588573033 @default.
- W2023163403 cites W26153466 @default.
- W2023163403 doi "https://doi.org/10.1016/j.anifeedsci.2013.10.004" @default.
- W2023163403 hasPublicationYear "2014" @default.
- W2023163403 type Work @default.
- W2023163403 sameAs 2023163403 @default.
- W2023163403 citedByCount "3" @default.
- W2023163403 countsByYear W20231634032016 @default.
- W2023163403 countsByYear W20231634032018 @default.
- W2023163403 crossrefType "journal-article" @default.
- W2023163403 hasAuthorship W2023163403A5082402904 @default.
- W2023163403 hasAuthorship W2023163403A5084587766 @default.
- W2023163403 hasConcept C105795698 @default.
- W2023163403 hasConcept C126838900 @default.
- W2023163403 hasConcept C140793950 @default.
- W2023163403 hasConcept C154945302 @default.
- W2023163403 hasConcept C183115368 @default.
- W2023163403 hasConcept C22354355 @default.
- W2023163403 hasConcept C2778053677 @default.
- W2023163403 hasConcept C2780138947 @default.
- W2023163403 hasConcept C33923547 @default.
- W2023163403 hasConcept C41008148 @default.
- W2023163403 hasConcept C6557445 @default.
- W2023163403 hasConcept C69738355 @default.
- W2023163403 hasConcept C71924100 @default.
- W2023163403 hasConcept C78397625 @default.
- W2023163403 hasConcept C86803240 @default.
- W2023163403 hasConceptScore W2023163403C105795698 @default.
- W2023163403 hasConceptScore W2023163403C126838900 @default.
- W2023163403 hasConceptScore W2023163403C140793950 @default.
- W2023163403 hasConceptScore W2023163403C154945302 @default.
- W2023163403 hasConceptScore W2023163403C183115368 @default.
- W2023163403 hasConceptScore W2023163403C22354355 @default.
- W2023163403 hasConceptScore W2023163403C2778053677 @default.
- W2023163403 hasConceptScore W2023163403C2780138947 @default.
- W2023163403 hasConceptScore W2023163403C33923547 @default.
- W2023163403 hasConceptScore W2023163403C41008148 @default.
- W2023163403 hasConceptScore W2023163403C6557445 @default.
- W2023163403 hasConceptScore W2023163403C69738355 @default.
- W2023163403 hasConceptScore W2023163403C71924100 @default.
- W2023163403 hasConceptScore W2023163403C78397625 @default.
- W2023163403 hasConceptScore W2023163403C86803240 @default.
- W2023163403 hasLocation W20231634031 @default.
- W2023163403 hasOpenAccess W2023163403 @default.
- W2023163403 hasPrimaryLocation W20231634031 @default.
- W2023163403 hasRelatedWork W1514957257 @default.
- W2023163403 hasRelatedWork W1984428589 @default.
- W2023163403 hasRelatedWork W1996636673 @default.
- W2023163403 hasRelatedWork W2022131355 @default.
- W2023163403 hasRelatedWork W2032894893 @default.
- W2023163403 hasRelatedWork W2067032815 @default.
- W2023163403 hasRelatedWork W2068414308 @default.