Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023171043> ?p ?o ?g. }
- W2023171043 endingPage "1266" @default.
- W2023171043 startingPage "1257" @default.
- W2023171043 abstract "Traffic accident data are often heterogeneous, which can cause certain relationships to remain hidden. Therefore, traffic accident analysis is often performed on a small subset of traffic accidents or several models are built for various traffic accident types. In this paper, we examine the effectiveness of a clustering technique, i.e. latent class clustering, for identifying homogenous traffic accident types. Firstly, a heterogeneous traffic accident data set is segmented into seven clusters, which are translated into seven traffic accident types. Secondly, injury analysis is performed for each cluster. The results of these cluster-based analyses are compared with the results of a full-data analysis. This shows that applying latent class clustering as a preliminary analysis can reveal hidden relationships and can help the domain expert or traffic safety researcher to segment traffic accidents." @default.
- W2023171043 created "2016-06-24" @default.
- W2023171043 creator A5042634804 @default.
- W2023171043 creator A5048446657 @default.
- W2023171043 creator A5064520786 @default.
- W2023171043 date "2008-07-01" @default.
- W2023171043 modified "2023-10-02" @default.
- W2023171043 title "Traffic accident segmentation by means of latent class clustering" @default.
- W2023171043 cites W1969320611 @default.
- W2023171043 cites W1971531656 @default.
- W2023171043 cites W1974097568 @default.
- W2023171043 cites W1980746151 @default.
- W2023171043 cites W1981476968 @default.
- W2023171043 cites W1992579014 @default.
- W2023171043 cites W2008689893 @default.
- W2023171043 cites W2011832962 @default.
- W2023171043 cites W2013845817 @default.
- W2023171043 cites W2016782899 @default.
- W2023171043 cites W2017485210 @default.
- W2023171043 cites W2025401241 @default.
- W2023171043 cites W2038175992 @default.
- W2023171043 cites W2039456928 @default.
- W2023171043 cites W2054466380 @default.
- W2023171043 cites W2054880594 @default.
- W2023171043 cites W2062786991 @default.
- W2023171043 cites W2075311013 @default.
- W2023171043 cites W2083006184 @default.
- W2023171043 cites W2095033980 @default.
- W2023171043 cites W2100372437 @default.
- W2023171043 cites W2106949108 @default.
- W2023171043 cites W2141012957 @default.
- W2023171043 cites W2153233077 @default.
- W2023171043 cites W2164594255 @default.
- W2023171043 doi "https://doi.org/10.1016/j.aap.2008.01.007" @default.
- W2023171043 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18606254" @default.
- W2023171043 hasPublicationYear "2008" @default.
- W2023171043 type Work @default.
- W2023171043 sameAs 2023171043 @default.
- W2023171043 citedByCount "185" @default.
- W2023171043 countsByYear W20231710432012 @default.
- W2023171043 countsByYear W20231710432013 @default.
- W2023171043 countsByYear W20231710432014 @default.
- W2023171043 countsByYear W20231710432015 @default.
- W2023171043 countsByYear W20231710432016 @default.
- W2023171043 countsByYear W20231710432017 @default.
- W2023171043 countsByYear W20231710432018 @default.
- W2023171043 countsByYear W20231710432019 @default.
- W2023171043 countsByYear W20231710432020 @default.
- W2023171043 countsByYear W20231710432021 @default.
- W2023171043 countsByYear W20231710432022 @default.
- W2023171043 countsByYear W20231710432023 @default.
- W2023171043 crossrefType "journal-article" @default.
- W2023171043 hasAuthorship W2023171043A5042634804 @default.
- W2023171043 hasAuthorship W2023171043A5048446657 @default.
- W2023171043 hasAuthorship W2023171043A5064520786 @default.
- W2023171043 hasBestOaLocation W20231710432 @default.
- W2023171043 hasConcept C111472728 @default.
- W2023171043 hasConcept C119857082 @default.
- W2023171043 hasConcept C124101348 @default.
- W2023171043 hasConcept C127413603 @default.
- W2023171043 hasConcept C138885662 @default.
- W2023171043 hasConcept C154945302 @default.
- W2023171043 hasConcept C164866538 @default.
- W2023171043 hasConcept C177264268 @default.
- W2023171043 hasConcept C199360897 @default.
- W2023171043 hasConcept C22212356 @default.
- W2023171043 hasConcept C2777212361 @default.
- W2023171043 hasConcept C2780289543 @default.
- W2023171043 hasConcept C2989506057 @default.
- W2023171043 hasConcept C31258907 @default.
- W2023171043 hasConcept C41008148 @default.
- W2023171043 hasConcept C58489278 @default.
- W2023171043 hasConcept C70727504 @default.
- W2023171043 hasConcept C73555534 @default.
- W2023171043 hasConceptScore W2023171043C111472728 @default.
- W2023171043 hasConceptScore W2023171043C119857082 @default.
- W2023171043 hasConceptScore W2023171043C124101348 @default.
- W2023171043 hasConceptScore W2023171043C127413603 @default.
- W2023171043 hasConceptScore W2023171043C138885662 @default.
- W2023171043 hasConceptScore W2023171043C154945302 @default.
- W2023171043 hasConceptScore W2023171043C164866538 @default.
- W2023171043 hasConceptScore W2023171043C177264268 @default.
- W2023171043 hasConceptScore W2023171043C199360897 @default.
- W2023171043 hasConceptScore W2023171043C22212356 @default.
- W2023171043 hasConceptScore W2023171043C2777212361 @default.
- W2023171043 hasConceptScore W2023171043C2780289543 @default.
- W2023171043 hasConceptScore W2023171043C2989506057 @default.
- W2023171043 hasConceptScore W2023171043C31258907 @default.
- W2023171043 hasConceptScore W2023171043C41008148 @default.
- W2023171043 hasConceptScore W2023171043C58489278 @default.
- W2023171043 hasConceptScore W2023171043C70727504 @default.
- W2023171043 hasConceptScore W2023171043C73555534 @default.
- W2023171043 hasIssue "4" @default.
- W2023171043 hasLocation W20231710431 @default.
- W2023171043 hasLocation W20231710432 @default.
- W2023171043 hasLocation W20231710433 @default.
- W2023171043 hasOpenAccess W2023171043 @default.
- W2023171043 hasPrimaryLocation W20231710431 @default.