Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023171750> ?p ?o ?g. }
- W2023171750 endingPage "15" @default.
- W2023171750 startingPage "15" @default.
- W2023171750 abstract "Disease maps are used increasingly in the health sciences, with applications ranging from the diagnosis of individual cases to regional and global assessments of public health. However, data on the distributions of emerging infectious diseases are often available from only a limited number of samples. We compared several spatial modelling approaches for predicting the geographic distributions of two tick-borne pathogens: Ehrlichia chaffeensis, the causative agent of human monocytotropic ehrlichiosis, and Anaplasma phagocytophilum, the causative agent of human granulocytotropic anaplasmosis. These approaches extended environmental modelling based on logistic regression by incorporating both spatial autocorrelation (the tendency for pathogen distributions to be clustered in space) and spatial heterogeneity (the potential for environmental relationships to vary spatially).Incorporating either spatial autocorrelation or spatial heterogeneity resulted in substantial improvements over the standard logistic regression model. For E. chaffeensis, which was common within the boundaries of its geographic range and had a highly clustered distribution, the model based only on spatial autocorrelation was most accurate. For A. phagocytophilum, which has a more complex zoonotic cycle and a comparatively weak spatial pattern, the model that incorporated both spatial autocorrelation and spatially heterogeneous relationships with environmental variables was most accurate.Spatial autocorrelation can improve the accuracy of predictive disease risk models by incorporating spatial patterns as a proxy for unmeasured environmental variables and spatial processes. Spatial heterogeneity can also improve prediction accuracy by accounting for unique ecological conditions in different regions that affect the relative importance of environmental drivers on disease risk." @default.
- W2023171750 created "2016-06-24" @default.
- W2023171750 creator A5004262800 @default.
- W2023171750 creator A5043651478 @default.
- W2023171750 creator A5058218973 @default.
- W2023171750 date "2008-01-01" @default.
- W2023171750 modified "2023-10-12" @default.
- W2023171750 title "Enhanced spatial models for predicting the geographic distributions of tick-borne pathogens" @default.
- W2023171750 cites W1536497620 @default.
- W2023171750 cites W1588320409 @default.
- W2023171750 cites W1599043334 @default.
- W2023171750 cites W1787818241 @default.
- W2023171750 cites W1867343379 @default.
- W2023171750 cites W1972327957 @default.
- W2023171750 cites W1976589182 @default.
- W2023171750 cites W2011819409 @default.
- W2023171750 cites W2015628143 @default.
- W2023171750 cites W2023910965 @default.
- W2023171750 cites W2028226037 @default.
- W2023171750 cites W2033481223 @default.
- W2023171750 cites W2049122105 @default.
- W2023171750 cites W2050384512 @default.
- W2023171750 cites W2054785762 @default.
- W2023171750 cites W2060347661 @default.
- W2023171750 cites W2062405414 @default.
- W2023171750 cites W2063140476 @default.
- W2023171750 cites W2073438776 @default.
- W2023171750 cites W2075845155 @default.
- W2023171750 cites W2078666091 @default.
- W2023171750 cites W2083940143 @default.
- W2023171750 cites W2086413944 @default.
- W2023171750 cites W2089263314 @default.
- W2023171750 cites W2089792340 @default.
- W2023171750 cites W2093223772 @default.
- W2023171750 cites W2094405218 @default.
- W2023171750 cites W2094881549 @default.
- W2023171750 cites W2099004418 @default.
- W2023171750 cites W2103023468 @default.
- W2023171750 cites W2104232463 @default.
- W2023171750 cites W2105196831 @default.
- W2023171750 cites W2114246634 @default.
- W2023171750 cites W2115268776 @default.
- W2023171750 cites W2121024110 @default.
- W2023171750 cites W2134431385 @default.
- W2023171750 cites W2144184583 @default.
- W2023171750 cites W2148323323 @default.
- W2023171750 cites W2157350498 @default.
- W2023171750 cites W2171646358 @default.
- W2023171750 cites W2172267293 @default.
- W2023171750 cites W2172550989 @default.
- W2023171750 cites W2178766926 @default.
- W2023171750 cites W2179100664 @default.
- W2023171750 cites W2179777555 @default.
- W2023171750 cites W2179957316 @default.
- W2023171750 cites W2180299416 @default.
- W2023171750 cites W222294773 @default.
- W2023171750 cites W2328872627 @default.
- W2023171750 cites W2413072736 @default.
- W2023171750 cites W2478338686 @default.
- W2023171750 cites W269411897 @default.
- W2023171750 cites W594503987 @default.
- W2023171750 cites W2178007091 @default.
- W2023171750 doi "https://doi.org/10.1186/1476-072x-7-15" @default.
- W2023171750 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2373776" @default.
- W2023171750 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18412972" @default.
- W2023171750 hasPublicationYear "2008" @default.
- W2023171750 type Work @default.
- W2023171750 sameAs 2023171750 @default.
- W2023171750 citedByCount "42" @default.
- W2023171750 countsByYear W20231717502012 @default.
- W2023171750 countsByYear W20231717502013 @default.
- W2023171750 countsByYear W20231717502014 @default.
- W2023171750 countsByYear W20231717502015 @default.
- W2023171750 countsByYear W20231717502016 @default.
- W2023171750 countsByYear W20231717502017 @default.
- W2023171750 countsByYear W20231717502018 @default.
- W2023171750 countsByYear W20231717502019 @default.
- W2023171750 countsByYear W20231717502021 @default.
- W2023171750 crossrefType "journal-article" @default.
- W2023171750 hasAuthorship W2023171750A5004262800 @default.
- W2023171750 hasAuthorship W2023171750A5043651478 @default.
- W2023171750 hasAuthorship W2023171750A5058218973 @default.
- W2023171750 hasBestOaLocation W20231717501 @default.
- W2023171750 hasConcept C105795698 @default.
- W2023171750 hasConcept C107130276 @default.
- W2023171750 hasConcept C126322002 @default.
- W2023171750 hasConcept C149782125 @default.
- W2023171750 hasConcept C151956035 @default.
- W2023171750 hasConcept C158709400 @default.
- W2023171750 hasConcept C159620131 @default.
- W2023171750 hasConcept C159654299 @default.
- W2023171750 hasConcept C180478619 @default.
- W2023171750 hasConcept C186744025 @default.
- W2023171750 hasConcept C18903297 @default.
- W2023171750 hasConcept C196070930 @default.
- W2023171750 hasConcept C201052633 @default.
- W2023171750 hasConcept C203014093 @default.
- W2023171750 hasConcept C205649164 @default.