Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023172093> ?p ?o ?g. }
- W2023172093 abstract "[1] Hydrological impacts of climate change are assessed by downscaling the General Circulation Model (GCM) outputs of predictor variables to local or regional scale hydrologic variables (predictand). Support Vector Machine (SVM) is a machine learning technique which is capable of capturing highly nonlinear relationship between predictor and predictand and thus performs better than conventional linear regression in transfer function-based downscaling modeling. SVM has certain parameters the values of which need to be fixed appropriately for controlling undertraining and overtraining. In this study, an optimization model is proposed to estimate the values of these parameters. As the optimization model, for selection of parameters, contains SVM as one of its constraints, analytical solution techniques are difficult to use in solving it. Probabilistic Global Search Algorithm (PGSL), a probabilistic search technique, is used to compute the optimum parameters of SVM. With these optimum parameters, training of SVM is performed for statistical downscaling. The obtained relationship between large-scale atmospheric variables and local-scale hydrologic variables (e.g., rainfall) is used to compute the hydrologic scenarios for multiple GCMs. The uncertainty resulting from the use of multiple GCMs is further modeled with a modified reliability ensemble averaging method. The proposed methodology is demonstrated with the prediction of monsoon rainfall of Assam and Meghalaya meteorological subdivision of northeastern India. The results obtained from the proposed model are compared with earlier developed SVM-based downscaling models, and improved performance is observed." @default.
- W2023172093 created "2016-06-24" @default.
- W2023172093 creator A5044691314 @default.
- W2023172093 date "2010-11-16" @default.
- W2023172093 modified "2023-10-05" @default.
- W2023172093 title "SVM-PGSL coupled approach for statistical downscaling to predict rainfall from GCM output" @default.
- W2023172093 cites W1484186257 @default.
- W2023172093 cites W1527805269 @default.
- W2023172093 cites W1594753289 @default.
- W2023172093 cites W1648445109 @default.
- W2023172093 cites W1969024250 @default.
- W2023172093 cites W1975056818 @default.
- W2023172093 cites W1977098131 @default.
- W2023172093 cites W1988387037 @default.
- W2023172093 cites W1989147046 @default.
- W2023172093 cites W2008845399 @default.
- W2023172093 cites W2016406377 @default.
- W2023172093 cites W2016628424 @default.
- W2023172093 cites W2019819708 @default.
- W2023172093 cites W2028450922 @default.
- W2023172093 cites W2037931255 @default.
- W2023172093 cites W2039626319 @default.
- W2023172093 cites W2049030309 @default.
- W2023172093 cites W2054837917 @default.
- W2023172093 cites W2056588985 @default.
- W2023172093 cites W2061580000 @default.
- W2023172093 cites W2061705743 @default.
- W2023172093 cites W2062577207 @default.
- W2023172093 cites W2068092239 @default.
- W2023172093 cites W2068582700 @default.
- W2023172093 cites W2068689590 @default.
- W2023172093 cites W2069960168 @default.
- W2023172093 cites W2074380418 @default.
- W2023172093 cites W2091092144 @default.
- W2023172093 cites W2094794852 @default.
- W2023172093 cites W2100931101 @default.
- W2023172093 cites W2101077148 @default.
- W2023172093 cites W2107123601 @default.
- W2023172093 cites W2125649838 @default.
- W2023172093 cites W2126326837 @default.
- W2023172093 cites W2132104490 @default.
- W2023172093 cites W2140362063 @default.
- W2023172093 cites W2147746661 @default.
- W2023172093 cites W2153129982 @default.
- W2023172093 cites W2156909104 @default.
- W2023172093 cites W2167235427 @default.
- W2023172093 cites W2173251738 @default.
- W2023172093 cites W2175018680 @default.
- W2023172093 cites W4231995407 @default.
- W2023172093 doi "https://doi.org/10.1029/2009jd013548" @default.
- W2023172093 hasPublicationYear "2010" @default.
- W2023172093 type Work @default.
- W2023172093 sameAs 2023172093 @default.
- W2023172093 citedByCount "97" @default.
- W2023172093 countsByYear W20231720932012 @default.
- W2023172093 countsByYear W20231720932013 @default.
- W2023172093 countsByYear W20231720932014 @default.
- W2023172093 countsByYear W20231720932015 @default.
- W2023172093 countsByYear W20231720932016 @default.
- W2023172093 countsByYear W20231720932017 @default.
- W2023172093 countsByYear W20231720932018 @default.
- W2023172093 countsByYear W20231720932019 @default.
- W2023172093 countsByYear W20231720932020 @default.
- W2023172093 countsByYear W20231720932021 @default.
- W2023172093 countsByYear W20231720932022 @default.
- W2023172093 countsByYear W20231720932023 @default.
- W2023172093 crossrefType "journal-article" @default.
- W2023172093 hasAuthorship W2023172093A5044691314 @default.
- W2023172093 hasConcept C107054158 @default.
- W2023172093 hasConcept C111368507 @default.
- W2023172093 hasConcept C119857082 @default.
- W2023172093 hasConcept C121332964 @default.
- W2023172093 hasConcept C12267149 @default.
- W2023172093 hasConcept C127313418 @default.
- W2023172093 hasConcept C132651083 @default.
- W2023172093 hasConcept C141452985 @default.
- W2023172093 hasConcept C143742823 @default.
- W2023172093 hasConcept C153294291 @default.
- W2023172093 hasConcept C39432304 @default.
- W2023172093 hasConcept C41008148 @default.
- W2023172093 hasConcept C41156917 @default.
- W2023172093 hasConcept C49204034 @default.
- W2023172093 hasConceptScore W2023172093C107054158 @default.
- W2023172093 hasConceptScore W2023172093C111368507 @default.
- W2023172093 hasConceptScore W2023172093C119857082 @default.
- W2023172093 hasConceptScore W2023172093C121332964 @default.
- W2023172093 hasConceptScore W2023172093C12267149 @default.
- W2023172093 hasConceptScore W2023172093C127313418 @default.
- W2023172093 hasConceptScore W2023172093C132651083 @default.
- W2023172093 hasConceptScore W2023172093C141452985 @default.
- W2023172093 hasConceptScore W2023172093C143742823 @default.
- W2023172093 hasConceptScore W2023172093C153294291 @default.
- W2023172093 hasConceptScore W2023172093C39432304 @default.
- W2023172093 hasConceptScore W2023172093C41008148 @default.
- W2023172093 hasConceptScore W2023172093C41156917 @default.
- W2023172093 hasConceptScore W2023172093C49204034 @default.
- W2023172093 hasIssue "D22" @default.
- W2023172093 hasLocation W20231720931 @default.
- W2023172093 hasOpenAccess W2023172093 @default.
- W2023172093 hasPrimaryLocation W20231720931 @default.