Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023172348> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2023172348 endingPage "902" @default.
- W2023172348 startingPage "894" @default.
- W2023172348 abstract "The knowledge of the martensite start (Ms) temperature of steels is sometimes important during parts and structures fabrication, and it can not be always properly estimated using conventional empirical methods. The additions in newly developed steels of alloying elements not considered in the empirical relationships, or with compositions out of the bounds used to formulate the equations, are common problems to be solved by experimental trial and error. If the trial process was minimised, cost and time might be saved. This work outlines the use of an artificial neural network to model the calculation of Ms temperature in engineering steels from their chemical composition. Moreover, a physical interpretation of the results is presented." @default.
- W2023172348 created "2016-06-24" @default.
- W2023172348 creator A5017653395 @default.
- W2023172348 creator A5054368147 @default.
- W2023172348 creator A5075761355 @default.
- W2023172348 date "2002-01-01" @default.
- W2023172348 modified "2023-10-11" @default.
- W2023172348 title "Determination of Ms Temperature in Steels: A Bayesian Neural Network Model." @default.
- W2023172348 cites W1483768820 @default.
- W2023172348 cites W2069657566 @default.
- W2023172348 cites W3022673560 @default.
- W2023172348 doi "https://doi.org/10.2355/isijinternational.42.894" @default.
- W2023172348 hasPublicationYear "2002" @default.
- W2023172348 type Work @default.
- W2023172348 sameAs 2023172348 @default.
- W2023172348 citedByCount "174" @default.
- W2023172348 countsByYear W20231723482012 @default.
- W2023172348 countsByYear W20231723482013 @default.
- W2023172348 countsByYear W20231723482014 @default.
- W2023172348 countsByYear W20231723482015 @default.
- W2023172348 countsByYear W20231723482016 @default.
- W2023172348 countsByYear W20231723482017 @default.
- W2023172348 countsByYear W20231723482018 @default.
- W2023172348 countsByYear W20231723482019 @default.
- W2023172348 countsByYear W20231723482020 @default.
- W2023172348 countsByYear W20231723482021 @default.
- W2023172348 countsByYear W20231723482022 @default.
- W2023172348 countsByYear W20231723482023 @default.
- W2023172348 crossrefType "journal-article" @default.
- W2023172348 hasAuthorship W2023172348A5017653395 @default.
- W2023172348 hasAuthorship W2023172348A5054368147 @default.
- W2023172348 hasAuthorship W2023172348A5075761355 @default.
- W2023172348 hasBestOaLocation W20231723481 @default.
- W2023172348 hasConcept C105795698 @default.
- W2023172348 hasConcept C107673813 @default.
- W2023172348 hasConcept C111919701 @default.
- W2023172348 hasConcept C119857082 @default.
- W2023172348 hasConcept C127413603 @default.
- W2023172348 hasConcept C133199616 @default.
- W2023172348 hasConcept C154945302 @default.
- W2023172348 hasConcept C18747287 @default.
- W2023172348 hasConcept C18762648 @default.
- W2023172348 hasConcept C191897082 @default.
- W2023172348 hasConcept C192562407 @default.
- W2023172348 hasConcept C199360897 @default.
- W2023172348 hasConcept C33724603 @default.
- W2023172348 hasConcept C33923547 @default.
- W2023172348 hasConcept C41008148 @default.
- W2023172348 hasConcept C44154836 @default.
- W2023172348 hasConcept C50644808 @default.
- W2023172348 hasConcept C527412718 @default.
- W2023172348 hasConcept C55037315 @default.
- W2023172348 hasConcept C78519656 @default.
- W2023172348 hasConcept C87976508 @default.
- W2023172348 hasConcept C98045186 @default.
- W2023172348 hasConceptScore W2023172348C105795698 @default.
- W2023172348 hasConceptScore W2023172348C107673813 @default.
- W2023172348 hasConceptScore W2023172348C111919701 @default.
- W2023172348 hasConceptScore W2023172348C119857082 @default.
- W2023172348 hasConceptScore W2023172348C127413603 @default.
- W2023172348 hasConceptScore W2023172348C133199616 @default.
- W2023172348 hasConceptScore W2023172348C154945302 @default.
- W2023172348 hasConceptScore W2023172348C18747287 @default.
- W2023172348 hasConceptScore W2023172348C18762648 @default.
- W2023172348 hasConceptScore W2023172348C191897082 @default.
- W2023172348 hasConceptScore W2023172348C192562407 @default.
- W2023172348 hasConceptScore W2023172348C199360897 @default.
- W2023172348 hasConceptScore W2023172348C33724603 @default.
- W2023172348 hasConceptScore W2023172348C33923547 @default.
- W2023172348 hasConceptScore W2023172348C41008148 @default.
- W2023172348 hasConceptScore W2023172348C44154836 @default.
- W2023172348 hasConceptScore W2023172348C50644808 @default.
- W2023172348 hasConceptScore W2023172348C527412718 @default.
- W2023172348 hasConceptScore W2023172348C55037315 @default.
- W2023172348 hasConceptScore W2023172348C78519656 @default.
- W2023172348 hasConceptScore W2023172348C87976508 @default.
- W2023172348 hasConceptScore W2023172348C98045186 @default.
- W2023172348 hasIssue "8" @default.
- W2023172348 hasLocation W20231723481 @default.
- W2023172348 hasLocation W20231723482 @default.
- W2023172348 hasOpenAccess W2023172348 @default.
- W2023172348 hasPrimaryLocation W20231723481 @default.
- W2023172348 hasRelatedWork W1977428788 @default.
- W2023172348 hasRelatedWork W2064087909 @default.
- W2023172348 hasRelatedWork W2386387936 @default.
- W2023172348 hasRelatedWork W2899084033 @default.
- W2023172348 hasRelatedWork W2999739669 @default.
- W2023172348 hasRelatedWork W3113563707 @default.
- W2023172348 hasRelatedWork W4200178981 @default.
- W2023172348 hasRelatedWork W4293236999 @default.
- W2023172348 hasRelatedWork W4306834977 @default.
- W2023172348 hasRelatedWork W819489088 @default.
- W2023172348 hasVolume "42" @default.
- W2023172348 isParatext "false" @default.
- W2023172348 isRetracted "false" @default.
- W2023172348 magId "2023172348" @default.
- W2023172348 workType "article" @default.