Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023192266> ?p ?o ?g. }
- W2023192266 endingPage "73" @default.
- W2023192266 startingPage "61" @default.
- W2023192266 abstract "In case of insufficient data samples in high-dimensional classification problems, sparse scatters of samples tend to have many ‘holes’—regions that have few or no nearby training samples from the class. When such regions lie close to inter-class boundaries, the nearest neighbors of a query may lie in the wrong class, thus leading to errors in the Nearest Neighbor classification rule. The K-local hyperplane distance nearest neighbor (HKNN) algorithm tackles this problem by approximating each class with a smooth nonlinear manifold, which is considered to be locally linear. The method takes advantage of the local linearity assumption by using the distances from a query sample to the affine hulls of query’s nearest neighbors for decision making. However, HKNN is limited to using the Euclidean distance metric, which is a significant limitation in practice. In this paper we reformulate HKNN in terms of subspaces, and propose a variant, the Local Discriminative Common Vector (LDCV) method, that is more suitable for classification tasks where the classes have similar intra-class variations. We then extend both methods to the nonlinear case by mapping the nearest neighbors into a higher-dimensional space where the linear manifolds are constructed. This procedure allows us to use a wide variety of distance functions in the process, while computing distances between the query sample and the nonlinear manifolds remains straightforward owing to the linear nature of the manifolds in the mapped space. We tested the proposed methods on several classification tasks, obtaining better results than both the Support Vector Machines (SVMs) and their local counterpart SVM-KNN on the USPS and Image segmentation databases, and outperforming the local SVM-KNN on the Caltech visual recognition database." @default.
- W2023192266 created "2016-06-24" @default.
- W2023192266 creator A5000854792 @default.
- W2023192266 creator A5001375778 @default.
- W2023192266 creator A5036113570 @default.
- W2023192266 creator A5062363302 @default.
- W2023192266 creator A5072358879 @default.
- W2023192266 date "2008-12-07" @default.
- W2023192266 modified "2023-10-13" @default.
- W2023192266 title "Manifold Based Local Classifiers: Linear and Nonlinear Approaches" @default.
- W2023192266 cites W1530115438 @default.
- W2023192266 cites W2001141328 @default.
- W2023192266 cites W2028569884 @default.
- W2023192266 cites W2053186076 @default.
- W2023192266 cites W2091632079 @default.
- W2023192266 cites W2098175874 @default.
- W2023192266 cites W2100247253 @default.
- W2023192266 cites W2101169619 @default.
- W2023192266 cites W2101430057 @default.
- W2023192266 cites W2111842831 @default.
- W2023192266 cites W2113957760 @default.
- W2023192266 cites W2116551122 @default.
- W2023192266 cites W2116596942 @default.
- W2023192266 cites W2116810533 @default.
- W2023192266 cites W2122034878 @default.
- W2023192266 cites W2126833203 @default.
- W2023192266 cites W2128629203 @default.
- W2023192266 cites W2130491779 @default.
- W2023192266 cites W2140095548 @default.
- W2023192266 cites W2155904486 @default.
- W2023192266 cites W2163999590 @default.
- W2023192266 cites W4250589301 @default.
- W2023192266 cites W43640798 @default.
- W2023192266 doi "https://doi.org/10.1007/s11265-008-0313-4" @default.
- W2023192266 hasPublicationYear "2008" @default.
- W2023192266 type Work @default.
- W2023192266 sameAs 2023192266 @default.
- W2023192266 citedByCount "16" @default.
- W2023192266 countsByYear W20231922662012 @default.
- W2023192266 countsByYear W20231922662013 @default.
- W2023192266 countsByYear W20231922662014 @default.
- W2023192266 countsByYear W20231922662015 @default.
- W2023192266 countsByYear W20231922662016 @default.
- W2023192266 countsByYear W20231922662017 @default.
- W2023192266 countsByYear W20231922662019 @default.
- W2023192266 countsByYear W20231922662020 @default.
- W2023192266 countsByYear W20231922662023 @default.
- W2023192266 crossrefType "journal-article" @default.
- W2023192266 hasAuthorship W2023192266A5000854792 @default.
- W2023192266 hasAuthorship W2023192266A5001375778 @default.
- W2023192266 hasAuthorship W2023192266A5036113570 @default.
- W2023192266 hasAuthorship W2023192266A5062363302 @default.
- W2023192266 hasAuthorship W2023192266A5072358879 @default.
- W2023192266 hasBestOaLocation W20231922662 @default.
- W2023192266 hasConcept C112128483 @default.
- W2023192266 hasConcept C113238511 @default.
- W2023192266 hasConcept C114614502 @default.
- W2023192266 hasConcept C116738811 @default.
- W2023192266 hasConcept C120174047 @default.
- W2023192266 hasConcept C121332964 @default.
- W2023192266 hasConcept C12362212 @default.
- W2023192266 hasConcept C127413603 @default.
- W2023192266 hasConcept C134306372 @default.
- W2023192266 hasConcept C151876577 @default.
- W2023192266 hasConcept C153180895 @default.
- W2023192266 hasConcept C154945302 @default.
- W2023192266 hasConcept C158622935 @default.
- W2023192266 hasConcept C162324750 @default.
- W2023192266 hasConcept C173110770 @default.
- W2023192266 hasConcept C176217482 @default.
- W2023192266 hasConcept C186450821 @default.
- W2023192266 hasConcept C202444582 @default.
- W2023192266 hasConcept C21547014 @default.
- W2023192266 hasConcept C2524010 @default.
- W2023192266 hasConcept C33923547 @default.
- W2023192266 hasConcept C41008148 @default.
- W2023192266 hasConcept C529865628 @default.
- W2023192266 hasConcept C62520636 @default.
- W2023192266 hasConcept C68693459 @default.
- W2023192266 hasConcept C70518039 @default.
- W2023192266 hasConcept C78519656 @default.
- W2023192266 hasConcept C92757383 @default.
- W2023192266 hasConcept C94475309 @default.
- W2023192266 hasConcept C97931131 @default.
- W2023192266 hasConceptScore W2023192266C112128483 @default.
- W2023192266 hasConceptScore W2023192266C113238511 @default.
- W2023192266 hasConceptScore W2023192266C114614502 @default.
- W2023192266 hasConceptScore W2023192266C116738811 @default.
- W2023192266 hasConceptScore W2023192266C120174047 @default.
- W2023192266 hasConceptScore W2023192266C121332964 @default.
- W2023192266 hasConceptScore W2023192266C12362212 @default.
- W2023192266 hasConceptScore W2023192266C127413603 @default.
- W2023192266 hasConceptScore W2023192266C134306372 @default.
- W2023192266 hasConceptScore W2023192266C151876577 @default.
- W2023192266 hasConceptScore W2023192266C153180895 @default.
- W2023192266 hasConceptScore W2023192266C154945302 @default.
- W2023192266 hasConceptScore W2023192266C158622935 @default.
- W2023192266 hasConceptScore W2023192266C162324750 @default.