Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023201442> ?p ?o ?g. }
- W2023201442 endingPage "2220" @default.
- W2023201442 startingPage "2202" @default.
- W2023201442 abstract "Finite-amplitude waves propagating at constant speed down an inclined fluid layer are computed by finite element analysis of the Navier–Stokes equations written in a reference frame translating at the wave speed. The velocity and pressure fields, free-surface shape and wave speed are computed simultaneously as functions of the Reynolds number Re and the wave number μ. The finite element results are compared with predictions of long-wave, asymptotic theories and boundary-layer approximations for the form and nonlinear transitions of finite-amplitude waves that evolve from the flat film state. Comparisons between the finite element calculations and the long-wave predictions for fixed μ and increasing Re agree well for small-amplitude waves. However, for larger-amplitude waves the long-wave results diverge qualitatively from the finite element predictions; the long-wave theories predict limit points in the solution families that do not exist in the finite element solutions. Comparisons between the finite element predictions, previous numerical simulations and experimental results for the shape and speed of periodic and solitary-like waves are in good agreement. Nonlinear interactions are demonstrated between multiple waves in a periodic wave train that cause secondary bifurcations to families of waves that differ from those that evolve from the neutral stability curve. These predictions for fixed Re and decreasing μ are in quantitative agreement with the results of long-wave approximations for small-amplitude waves. Comparisons with the predictions of boundary-layer approximations show sensitivity of the solution structure to the value of the Weber number We." @default.
- W2023201442 created "2016-06-24" @default.
- W2023201442 creator A5015710627 @default.
- W2023201442 creator A5027236418 @default.
- W2023201442 creator A5043876015 @default.
- W2023201442 date "1994-06-01" @default.
- W2023201442 modified "2023-10-05" @default.
- W2023201442 title "Traveling waves on vertical films: Numerical analysis using the finite element method" @default.
- W2023201442 cites W100484353 @default.
- W2023201442 cites W1978488666 @default.
- W2023201442 cites W1980835462 @default.
- W2023201442 cites W1982445272 @default.
- W2023201442 cites W1985537065 @default.
- W2023201442 cites W1987375622 @default.
- W2023201442 cites W1992009568 @default.
- W2023201442 cites W1998896263 @default.
- W2023201442 cites W2001757790 @default.
- W2023201442 cites W2008209896 @default.
- W2023201442 cites W2023105070 @default.
- W2023201442 cites W2025647789 @default.
- W2023201442 cites W2035295038 @default.
- W2023201442 cites W2035397598 @default.
- W2023201442 cites W2042377097 @default.
- W2023201442 cites W2047627813 @default.
- W2023201442 cites W2049397072 @default.
- W2023201442 cites W2052485023 @default.
- W2023201442 cites W2055617900 @default.
- W2023201442 cites W2056839217 @default.
- W2023201442 cites W2057622389 @default.
- W2023201442 cites W2057683997 @default.
- W2023201442 cites W2058406909 @default.
- W2023201442 cites W2058692569 @default.
- W2023201442 cites W2059691352 @default.
- W2023201442 cites W2064823050 @default.
- W2023201442 cites W2069000306 @default.
- W2023201442 cites W2073130283 @default.
- W2023201442 cites W2076410150 @default.
- W2023201442 cites W2081519565 @default.
- W2023201442 cites W2083045928 @default.
- W2023201442 cites W2099726454 @default.
- W2023201442 cites W2105103650 @default.
- W2023201442 cites W2113658878 @default.
- W2023201442 cites W2115117229 @default.
- W2023201442 cites W2116263521 @default.
- W2023201442 cites W2127174168 @default.
- W2023201442 cites W2141237926 @default.
- W2023201442 cites W2147675110 @default.
- W2023201442 doi "https://doi.org/10.1063/1.868222" @default.
- W2023201442 hasPublicationYear "1994" @default.
- W2023201442 type Work @default.
- W2023201442 sameAs 2023201442 @default.
- W2023201442 citedByCount "115" @default.
- W2023201442 countsByYear W20232014422012 @default.
- W2023201442 countsByYear W20232014422013 @default.
- W2023201442 countsByYear W20232014422014 @default.
- W2023201442 countsByYear W20232014422015 @default.
- W2023201442 countsByYear W20232014422016 @default.
- W2023201442 countsByYear W20232014422017 @default.
- W2023201442 countsByYear W20232014422019 @default.
- W2023201442 countsByYear W20232014422020 @default.
- W2023201442 countsByYear W20232014422021 @default.
- W2023201442 countsByYear W20232014422022 @default.
- W2023201442 countsByYear W20232014422023 @default.
- W2023201442 crossrefType "journal-article" @default.
- W2023201442 hasAuthorship W2023201442A5015710627 @default.
- W2023201442 hasAuthorship W2023201442A5027236418 @default.
- W2023201442 hasAuthorship W2023201442A5043876015 @default.
- W2023201442 hasConcept C103437262 @default.
- W2023201442 hasConcept C120665830 @default.
- W2023201442 hasConcept C121332964 @default.
- W2023201442 hasConcept C134306372 @default.
- W2023201442 hasConcept C135628077 @default.
- W2023201442 hasConcept C143351421 @default.
- W2023201442 hasConcept C158622935 @default.
- W2023201442 hasConcept C180205008 @default.
- W2023201442 hasConcept C182748727 @default.
- W2023201442 hasConcept C196558001 @default.
- W2023201442 hasConcept C33923547 @default.
- W2023201442 hasConcept C43179477 @default.
- W2023201442 hasConcept C44886760 @default.
- W2023201442 hasConcept C57879066 @default.
- W2023201442 hasConcept C62520636 @default.
- W2023201442 hasConcept C74650414 @default.
- W2023201442 hasConcept C97355855 @default.
- W2023201442 hasConceptScore W2023201442C103437262 @default.
- W2023201442 hasConceptScore W2023201442C120665830 @default.
- W2023201442 hasConceptScore W2023201442C121332964 @default.
- W2023201442 hasConceptScore W2023201442C134306372 @default.
- W2023201442 hasConceptScore W2023201442C135628077 @default.
- W2023201442 hasConceptScore W2023201442C143351421 @default.
- W2023201442 hasConceptScore W2023201442C158622935 @default.
- W2023201442 hasConceptScore W2023201442C180205008 @default.
- W2023201442 hasConceptScore W2023201442C182748727 @default.
- W2023201442 hasConceptScore W2023201442C196558001 @default.
- W2023201442 hasConceptScore W2023201442C33923547 @default.
- W2023201442 hasConceptScore W2023201442C43179477 @default.
- W2023201442 hasConceptScore W2023201442C44886760 @default.
- W2023201442 hasConceptScore W2023201442C57879066 @default.