Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023202016> ?p ?o ?g. }
- W2023202016 endingPage "254" @default.
- W2023202016 startingPage "235" @default.
- W2023202016 abstract "For 2D linear viscous flow, it is shown that the rates of rotation and stretch of an isolated elliptical inclusion with a coaxial elliptical rim are fully determined by two corresponding scalar values. For power-law viscosity, effective viscosity ratios of the inclusion and rim to the matrix depend on orientation and the system is more complex but, in practice, the simplification with two scalar values still provides a good approximation. Finite-element modelling (FEM) is used to determine the two characteristic values across a wide parameter space for the linear viscous case, with a viscosity ratio (relative to the matrix) of the inclusion from 106 to 1, of the rim from 10−6 to 1, axial ratios from 1.00025 to 20, and rim thicknesses relative to the inclusion axes of 5 to 20%. Results are presented in a multi-dimensional data table, allowing continuous interpolation over the investigated parameter range. Based on these instantaneous rates, the shape fabric of a population of inclusions is forward modelled using an initial value Ordinary Differential Equation (ODE) approach, with the simplifying but unrealistic assumption that the rim remains elliptical in shape and coaxial with respect to the inclusion. However, comparison with accurate large strain numerical experiments demonstrates that this simplified model gives qualitatively robust predictions and, for a range of investigated examples, also remarkably good quantitative estimates for shear strains up to at least γ = 5. A statistical approach, allowing random variation in the initial orientation, axial ratio and rim viscosity, can reproduce the characteristic shape preferred orientation (SPO) of natural porphyroclast populations. However, vorticity analysis based on the SPO or the interpreted stable orientation of inclusions is not practical. Varying parameters, such as inclusion and rim viscosity, rim thickness, and power law-exponents for non-linear viscosity, can reproduce the range of naturally observed behaviour (e.g., back-rotation, effectively stable orientations at back-rotated angles, a cut-off axial ratio separating rotating from stable inclusions) even for constant simple shear and these features are not uniquely characteristic of the vorticity of the background flow." @default.
- W2023202016 created "2016-06-24" @default.
- W2023202016 creator A5007726741 @default.
- W2023202016 date "2013-01-01" @default.
- W2023202016 modified "2023-10-18" @default.
- W2023202016 title "Behaviour of an isolated rimmed elliptical inclusion in 2D slow incompressible viscous flow" @default.
- W2023202016 cites W1518695344 @default.
- W2023202016 cites W1967141113 @default.
- W2023202016 cites W1967554632 @default.
- W2023202016 cites W1968922555 @default.
- W2023202016 cites W1970269511 @default.
- W2023202016 cites W1970565634 @default.
- W2023202016 cites W1970655155 @default.
- W2023202016 cites W1972473517 @default.
- W2023202016 cites W1974796053 @default.
- W2023202016 cites W1975625644 @default.
- W2023202016 cites W1975667139 @default.
- W2023202016 cites W1977362337 @default.
- W2023202016 cites W1978888796 @default.
- W2023202016 cites W1979881854 @default.
- W2023202016 cites W1983993498 @default.
- W2023202016 cites W1984409136 @default.
- W2023202016 cites W1986079379 @default.
- W2023202016 cites W1986644826 @default.
- W2023202016 cites W1988146465 @default.
- W2023202016 cites W1989533499 @default.
- W2023202016 cites W1991795741 @default.
- W2023202016 cites W1996977527 @default.
- W2023202016 cites W1999686550 @default.
- W2023202016 cites W2002124032 @default.
- W2023202016 cites W2002481264 @default.
- W2023202016 cites W2013185156 @default.
- W2023202016 cites W2013495019 @default.
- W2023202016 cites W2014817002 @default.
- W2023202016 cites W2017248036 @default.
- W2023202016 cites W2019141427 @default.
- W2023202016 cites W2020384338 @default.
- W2023202016 cites W2022744850 @default.
- W2023202016 cites W2024782821 @default.
- W2023202016 cites W2028645817 @default.
- W2023202016 cites W2030234608 @default.
- W2023202016 cites W2031293425 @default.
- W2023202016 cites W2032980012 @default.
- W2023202016 cites W2033720239 @default.
- W2023202016 cites W2037419808 @default.
- W2023202016 cites W2039798852 @default.
- W2023202016 cites W2040310091 @default.
- W2023202016 cites W2042712916 @default.
- W2023202016 cites W2046182326 @default.
- W2023202016 cites W2047353103 @default.
- W2023202016 cites W2048472353 @default.
- W2023202016 cites W2048743644 @default.
- W2023202016 cites W2050184897 @default.
- W2023202016 cites W2055204374 @default.
- W2023202016 cites W2055836436 @default.
- W2023202016 cites W2057065884 @default.
- W2023202016 cites W2057304403 @default.
- W2023202016 cites W2057981977 @default.
- W2023202016 cites W2059912112 @default.
- W2023202016 cites W2066527465 @default.
- W2023202016 cites W2072629487 @default.
- W2023202016 cites W2084024101 @default.
- W2023202016 cites W2084401884 @default.
- W2023202016 cites W2090863214 @default.
- W2023202016 cites W2092151732 @default.
- W2023202016 cites W2096105657 @default.
- W2023202016 cites W2098910430 @default.
- W2023202016 cites W2105975096 @default.
- W2023202016 cites W2131477472 @default.
- W2023202016 cites W2133878347 @default.
- W2023202016 cites W2143109268 @default.
- W2023202016 cites W2150224887 @default.
- W2023202016 cites W2152537785 @default.
- W2023202016 cites W2153178980 @default.
- W2023202016 cites W2153951802 @default.
- W2023202016 cites W2171498419 @default.
- W2023202016 cites W2171737740 @default.
- W2023202016 doi "https://doi.org/10.1016/j.jsg.2012.08.011" @default.
- W2023202016 hasPublicationYear "2013" @default.
- W2023202016 type Work @default.
- W2023202016 sameAs 2023202016 @default.
- W2023202016 citedByCount "24" @default.
- W2023202016 countsByYear W20232020162013 @default.
- W2023202016 countsByYear W20232020162014 @default.
- W2023202016 countsByYear W20232020162015 @default.
- W2023202016 countsByYear W20232020162016 @default.
- W2023202016 countsByYear W20232020162017 @default.
- W2023202016 countsByYear W20232020162019 @default.
- W2023202016 countsByYear W20232020162020 @default.
- W2023202016 countsByYear W20232020162021 @default.
- W2023202016 countsByYear W20232020162023 @default.
- W2023202016 crossrefType "journal-article" @default.
- W2023202016 hasAuthorship W2023202016A5007726741 @default.
- W2023202016 hasConcept C121332964 @default.
- W2023202016 hasConcept C127172972 @default.
- W2023202016 hasConcept C127313418 @default.
- W2023202016 hasConcept C134306372 @default.
- W2023202016 hasConcept C2524010 @default.