Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023203753> ?p ?o ?g. }
- W2023203753 endingPage "582" @default.
- W2023203753 startingPage "572" @default.
- W2023203753 abstract "The Support Vector Machine (SVM) is an increasingly popular learning procedure based on statistical learning theory, and involves a training phase in which the model is trained by a training dataset of associated input and target output values. The trained model is then used to evaluate a separate set of testing data. There are two main ideas underlying the SVM for discriminant-type problems. The first is an optimum linear separating hyperplane that separates the data patterns. The second is the use of kernel functions to convert the original non-linear data patterns into the format that is linearly separable in a high-dimensional feature space. In this paper, an overview of the SVM, both one-class and two-class SVM methods, is first presented followed by its use in landslide susceptibility mapping. A study area was selected from the natural terrain of Hong Kong, and slope angle, slope aspect, elevation, profile curvature of slope, lithology, vegetation cover and topographic wetness index (TWI) were used as environmental parameters which influence the occurrence of landslides. One-class and two-class SVM models were trained and then used to map landslide susceptibility respectively. The resulting susceptibility maps obtained by the methods were compared to that obtained by the logistic regression (LR) method. It is concluded that two-class SVM possesses better prediction efficiency than logistic regression and one-class SVM. However, one-class SVM, which only requires failed cases, has an advantage over the other two methods as only “failed” case information is usually available in landslide susceptibility mapping." @default.
- W2023203753 created "2016-06-24" @default.
- W2023203753 creator A5021651601 @default.
- W2023203753 creator A5069090047 @default.
- W2023203753 creator A5090798846 @default.
- W2023203753 date "2008-11-01" @default.
- W2023203753 modified "2023-10-05" @default.
- W2023203753 title "Landslide susceptibility mapping based on Support Vector Machine: A case study on natural slopes of Hong Kong, China" @default.
- W2023203753 cites W1965237565 @default.
- W2023203753 cites W1967335776 @default.
- W2023203753 cites W1973249074 @default.
- W2023203753 cites W1979408254 @default.
- W2023203753 cites W1979486410 @default.
- W2023203753 cites W1986385443 @default.
- W2023203753 cites W1986643700 @default.
- W2023203753 cites W1988650824 @default.
- W2023203753 cites W1989158271 @default.
- W2023203753 cites W1997556502 @default.
- W2023203753 cites W2000380895 @default.
- W2023203753 cites W2010121494 @default.
- W2023203753 cites W2010406160 @default.
- W2023203753 cites W2017458088 @default.
- W2023203753 cites W2018612134 @default.
- W2023203753 cites W2020062384 @default.
- W2023203753 cites W2020924270 @default.
- W2023203753 cites W2042229599 @default.
- W2023203753 cites W2045518796 @default.
- W2023203753 cites W2049466036 @default.
- W2023203753 cites W2056214587 @default.
- W2023203753 cites W2075993644 @default.
- W2023203753 cites W2078619499 @default.
- W2023203753 cites W2090105324 @default.
- W2023203753 cites W2092803403 @default.
- W2023203753 cites W2096152168 @default.
- W2023203753 cites W2100075837 @default.
- W2023203753 cites W2100294832 @default.
- W2023203753 cites W2102531694 @default.
- W2023203753 cites W2102794349 @default.
- W2023203753 cites W2107108409 @default.
- W2023203753 cites W2113746882 @default.
- W2023203753 cites W2132870739 @default.
- W2023203753 cites W2134955829 @default.
- W2023203753 cites W2147555471 @default.
- W2023203753 cites W2159793693 @default.
- W2023203753 cites W2161920802 @default.
- W2023203753 doi "https://doi.org/10.1016/j.geomorph.2008.02.011" @default.
- W2023203753 hasPublicationYear "2008" @default.
- W2023203753 type Work @default.
- W2023203753 sameAs 2023203753 @default.
- W2023203753 citedByCount "444" @default.
- W2023203753 countsByYear W20232037532012 @default.
- W2023203753 countsByYear W20232037532013 @default.
- W2023203753 countsByYear W20232037532014 @default.
- W2023203753 countsByYear W20232037532015 @default.
- W2023203753 countsByYear W20232037532016 @default.
- W2023203753 countsByYear W20232037532017 @default.
- W2023203753 countsByYear W20232037532018 @default.
- W2023203753 countsByYear W20232037532019 @default.
- W2023203753 countsByYear W20232037532020 @default.
- W2023203753 countsByYear W20232037532021 @default.
- W2023203753 countsByYear W20232037532022 @default.
- W2023203753 countsByYear W20232037532023 @default.
- W2023203753 crossrefType "journal-article" @default.
- W2023203753 hasAuthorship W2023203753A5021651601 @default.
- W2023203753 hasAuthorship W2023203753A5069090047 @default.
- W2023203753 hasAuthorship W2023203753A5090798846 @default.
- W2023203753 hasConcept C114793014 @default.
- W2023203753 hasConcept C119857082 @default.
- W2023203753 hasConcept C12267149 @default.
- W2023203753 hasConcept C124101348 @default.
- W2023203753 hasConcept C127313418 @default.
- W2023203753 hasConcept C151956035 @default.
- W2023203753 hasConcept C153180895 @default.
- W2023203753 hasConcept C154945302 @default.
- W2023203753 hasConcept C161840515 @default.
- W2023203753 hasConcept C186295008 @default.
- W2023203753 hasConcept C205649164 @default.
- W2023203753 hasConcept C2524010 @default.
- W2023203753 hasConcept C2776898743 @default.
- W2023203753 hasConcept C33923547 @default.
- W2023203753 hasConcept C41008148 @default.
- W2023203753 hasConcept C58640448 @default.
- W2023203753 hasConcept C62649853 @default.
- W2023203753 hasConcept C68693459 @default.
- W2023203753 hasConcept C69738355 @default.
- W2023203753 hasConceptScore W2023203753C114793014 @default.
- W2023203753 hasConceptScore W2023203753C119857082 @default.
- W2023203753 hasConceptScore W2023203753C12267149 @default.
- W2023203753 hasConceptScore W2023203753C124101348 @default.
- W2023203753 hasConceptScore W2023203753C127313418 @default.
- W2023203753 hasConceptScore W2023203753C151956035 @default.
- W2023203753 hasConceptScore W2023203753C153180895 @default.
- W2023203753 hasConceptScore W2023203753C154945302 @default.
- W2023203753 hasConceptScore W2023203753C161840515 @default.
- W2023203753 hasConceptScore W2023203753C186295008 @default.
- W2023203753 hasConceptScore W2023203753C205649164 @default.
- W2023203753 hasConceptScore W2023203753C2524010 @default.
- W2023203753 hasConceptScore W2023203753C2776898743 @default.