Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023206822> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2023206822 endingPage "669" @default.
- W2023206822 startingPage "647" @default.
- W2023206822 abstract "Time-domain simulation of wave phenomena on a finite computational domain often requires a fictitious outer boundary. An important practical issue is the specification of appropriate boundary conditions on this boundary, often conditions of complete transparency. Attention to this issue has been paid elsewhere, and here we consider a different, although related, issue: far-field signal recovery. Namely, from smooth data recorded on the outer boundary we wish to recover the far-field signal which would reach arbitrarily large distances. These signals encode information about interior scatterers and often correspond to actual measurements. This article expresses far-field signal recovery in terms of time-domain convolutions, each between a solution multipole moment recorded at the boundary and a sum-of-exponentials kernel. Each exponential corresponds to a pole term in the Laplace transform of the kernel, a finite sum of simple poles. Greengard, Hagstrom, and Jiang have derived the large-$ell$ (spherical-harmonic index) asymptotic expansion for the pole residues, and their analysis shows that, when expressed in terms of the exact sum-of-exponentials, large-$ell$ signal recovery is plagued by cancellation errors. Nevertheless, through an alternative integral representation of the kernel and its subsequent approximation by a {em smaller} number of exponential terms (kernel compression), we are able to alleviate these errors and achieve accurate signal recovery. We empirically examine scaling relations between the parameters which determine a compressed kernel, and perform numerical tests of signal teleportation from one radial value $r_1$ to another $r_2$, including the case $r_2=infty$. We conclude with a brief discussion on application to other hyperbolic equations posed on non-flat geometries where waves undergo backscatter." @default.
- W2023206822 created "2016-06-24" @default.
- W2023206822 creator A5061276904 @default.
- W2023206822 creator A5075664699 @default.
- W2023206822 date "2015-02-18" @default.
- W2023206822 modified "2023-09-25" @default.
- W2023206822 title "Fast Evaluation of Far-Field Signals for Time-Domain Wave Propagation" @default.
- W2023206822 cites W1484406949 @default.
- W2023206822 cites W1542070326 @default.
- W2023206822 cites W1972928524 @default.
- W2023206822 cites W1991015092 @default.
- W2023206822 cites W2011411952 @default.
- W2023206822 cites W2035045319 @default.
- W2023206822 cites W2062081837 @default.
- W2023206822 cites W2062890439 @default.
- W2023206822 cites W2125526756 @default.
- W2023206822 cites W2142167905 @default.
- W2023206822 doi "https://doi.org/10.1007/s10915-015-9995-5" @default.
- W2023206822 hasPublicationYear "2015" @default.
- W2023206822 type Work @default.
- W2023206822 sameAs 2023206822 @default.
- W2023206822 citedByCount "2" @default.
- W2023206822 countsByYear W20232068222016 @default.
- W2023206822 countsByYear W20232068222021 @default.
- W2023206822 crossrefType "journal-article" @default.
- W2023206822 hasAuthorship W2023206822A5061276904 @default.
- W2023206822 hasAuthorship W2023206822A5075664699 @default.
- W2023206822 hasBestOaLocation W20232068222 @default.
- W2023206822 hasConcept C11413529 @default.
- W2023206822 hasConcept C118615104 @default.
- W2023206822 hasConcept C134306372 @default.
- W2023206822 hasConcept C151376022 @default.
- W2023206822 hasConcept C182310444 @default.
- W2023206822 hasConcept C28826006 @default.
- W2023206822 hasConcept C33923547 @default.
- W2023206822 hasConcept C62354387 @default.
- W2023206822 hasConcept C74193536 @default.
- W2023206822 hasConceptScore W2023206822C11413529 @default.
- W2023206822 hasConceptScore W2023206822C118615104 @default.
- W2023206822 hasConceptScore W2023206822C134306372 @default.
- W2023206822 hasConceptScore W2023206822C151376022 @default.
- W2023206822 hasConceptScore W2023206822C182310444 @default.
- W2023206822 hasConceptScore W2023206822C28826006 @default.
- W2023206822 hasConceptScore W2023206822C33923547 @default.
- W2023206822 hasConceptScore W2023206822C62354387 @default.
- W2023206822 hasConceptScore W2023206822C74193536 @default.
- W2023206822 hasIssue "3" @default.
- W2023206822 hasLocation W20232068221 @default.
- W2023206822 hasLocation W20232068222 @default.
- W2023206822 hasOpenAccess W2023206822 @default.
- W2023206822 hasPrimaryLocation W20232068221 @default.
- W2023206822 hasRelatedWork W1556508989 @default.
- W2023206822 hasRelatedWork W1977673410 @default.
- W2023206822 hasRelatedWork W2052109794 @default.
- W2023206822 hasRelatedWork W2074759558 @default.
- W2023206822 hasRelatedWork W2100405323 @default.
- W2023206822 hasRelatedWork W2164596632 @default.
- W2023206822 hasRelatedWork W4210327724 @default.
- W2023206822 hasRelatedWork W4213213156 @default.
- W2023206822 hasRelatedWork W4287755247 @default.
- W2023206822 hasRelatedWork W4288944437 @default.
- W2023206822 hasVolume "64" @default.
- W2023206822 isParatext "false" @default.
- W2023206822 isRetracted "false" @default.
- W2023206822 magId "2023206822" @default.
- W2023206822 workType "article" @default.