Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023210080> ?p ?o ?g. }
- W2023210080 abstract "We have carried out a systematic ${}^{63}mathrm{Cu}$ nuclear magnetic resonance (NMR) study on a set of ytterbium-based Kondo compounds $mathrm{Yb}X{mathrm{Cu}}_{4}$ with $X=mathrm{Au},$ Ag, In, Cd, Tl, and Mg. Splitting of the central NMR line due to a second-order electric-quadrupole interaction is of the order of magnitude of axial Knight shift, and the extent of splitting is controlled by changing applied field H. From the splitting of the central line, we have succeeded to deduce the values of both isotropic Knight shift ${K}_{mathrm{iso}}$ and axial Knight shift ${K}_{mathrm{ax}},$ taking a value of electric-quadrupole frequency determined by pure quadrupole resonance of ${}^{63}mathrm{Cu}.$ ${K}_{mathrm{iso}}$ versus magnetic susceptibility $ensuremath{chi}$ plots for each of the compounds with $X=mathrm{Au},$ Ag, and In are roughly on a straight line. For ${mathrm{YbAgCu}}_{4}$ (Kondo temperature ${T}_{K}ensuremath{sim}100 mathrm{K}),$ both ${K}_{mathrm{iso}}$ and the unit-cell volume ${v}_{c}$ reach a local minimum around 40 K. We have found a linear relation between ${K}_{mathrm{iso}}$ and ${v}_{c}$ below 100 K, similar to that observed in ${mathrm{YbInCu}}_{4},$ indicating that the nonmagnetic behavior at low temperatures can be ascribed mainly to the Kondo volume expansion. In contrast, ${K}_{mathrm{iso}}$ versus $ensuremath{chi}$ plots for ${mathrm{YbCdCu}}_{4}$ ${(T}_{K}ensuremath{sim}220 mathrm{K})$ and ${mathrm{YbMgCu}}_{4} {(T}_{K}ensuremath{sim}860 mathrm{K})$ exhibit somewhat complex behavior: hyperfine field ${H}_{mathrm{hf}}$ markedly increases coincident with the saturated behavior of $ensuremath{chi}$ for $X=mathrm{Cd}$ below $ensuremath{simeq}140 mathrm{K},$ and with the decrease in $ensuremath{chi}$ for $X=mathrm{Mg}$ below $ensuremath{sim}260 mathrm{K}.$ ${H}_{mathrm{hf}}$ originates mainly from transferred hyperfine coupling between Cu nucleus and Yb $4f$ moment, and the large increase in ${H}_{mathrm{hf}}$ is conjectured to result from a variation of crystal-electric-field interactions as the system transforms into a mixed-valence state. The variation with the species of X atoms of temperature-independent on-site contribution ${K}_{s}$ to the Knight shift is found to correlate with that of the electronic specific heat coefficient $ensuremath{gamma}$ (except for $X=mathrm{Cd}),$ each of which gives a measure of the density of states of conduction $mathrm{sf}$ resonance bands. Finally, using the values of ${K}_{s},$ ensuremath{gamma}, and ${T}_{K},$ we have proposed a phase diagram for $mathrm{Yb}X{mathrm{Cu}}_{4}$ series, which corresponds to Doniach's phase diagram." @default.
- W2023210080 created "2016-06-24" @default.
- W2023210080 creator A5001680985 @default.
- W2023210080 creator A5018605011 @default.
- W2023210080 creator A5024274003 @default.
- W2023210080 creator A5040930760 @default.
- W2023210080 creator A5055797792 @default.
- W2023210080 creator A5056607107 @default.
- W2023210080 creator A5071136351 @default.
- W2023210080 date "2002-07-09" @default.
- W2023210080 modified "2023-09-23" @default.
- W2023210080 title "Physical properties of the dense Kondo compounds<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML display=inline><mml:mi mathvariant=normal>Yb</mml:mi><mml:mi>X</mml:mi><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=normal>Cu</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mi> </mml:mi><mml:mo>(</mml:mo><mml:mi>X</mml:mi><mml:mo>=</mml:mo><mml:mi mathvariant=normal>Au</mml:mi><mml:mo>,</mml:mo></mml:math>Ag, In, Cd, Tl, and Mg) probed by<…" @default.
- W2023210080 cites W1609215169 @default.
- W2023210080 cites W1634087271 @default.
- W2023210080 cites W1964047305 @default.
- W2023210080 cites W1975913719 @default.
- W2023210080 cites W1976665312 @default.
- W2023210080 cites W1979473212 @default.
- W2023210080 cites W1981302290 @default.
- W2023210080 cites W1985511114 @default.
- W2023210080 cites W1992937951 @default.
- W2023210080 cites W1992961151 @default.
- W2023210080 cites W1996273394 @default.
- W2023210080 cites W2000772371 @default.
- W2023210080 cites W2012678346 @default.
- W2023210080 cites W2014602743 @default.
- W2023210080 cites W2017812705 @default.
- W2023210080 cites W2020751869 @default.
- W2023210080 cites W2044263102 @default.
- W2023210080 cites W2047069311 @default.
- W2023210080 cites W2048193622 @default.
- W2023210080 cites W2048903454 @default.
- W2023210080 cites W2049282785 @default.
- W2023210080 cites W2052253353 @default.
- W2023210080 cites W2054126037 @default.
- W2023210080 cites W2057686340 @default.
- W2023210080 cites W2059853844 @default.
- W2023210080 cites W2060283711 @default.
- W2023210080 cites W2063217920 @default.
- W2023210080 cites W2066523761 @default.
- W2023210080 cites W2080615833 @default.
- W2023210080 cites W2085949812 @default.
- W2023210080 cites W2090454486 @default.
- W2023210080 cites W2093993941 @default.
- W2023210080 cites W2106264422 @default.
- W2023210080 cites W2113740414 @default.
- W2023210080 cites W2276162587 @default.
- W2023210080 cites W24679283 @default.
- W2023210080 cites W2472295456 @default.
- W2023210080 doi "https://doi.org/10.1103/physrevb.66.014420" @default.
- W2023210080 hasPublicationYear "2002" @default.
- W2023210080 type Work @default.
- W2023210080 sameAs 2023210080 @default.
- W2023210080 citedByCount "25" @default.
- W2023210080 countsByYear W20232100802012 @default.
- W2023210080 countsByYear W20232100802014 @default.
- W2023210080 countsByYear W20232100802019 @default.
- W2023210080 countsByYear W20232100802020 @default.
- W2023210080 countsByYear W20232100802022 @default.
- W2023210080 countsByYear W20232100802023 @default.
- W2023210080 crossrefType "journal-article" @default.
- W2023210080 hasAuthorship W2023210080A5001680985 @default.
- W2023210080 hasAuthorship W2023210080A5018605011 @default.
- W2023210080 hasAuthorship W2023210080A5024274003 @default.
- W2023210080 hasAuthorship W2023210080A5040930760 @default.
- W2023210080 hasAuthorship W2023210080A5055797792 @default.
- W2023210080 hasAuthorship W2023210080A5056607107 @default.
- W2023210080 hasAuthorship W2023210080A5071136351 @default.
- W2023210080 hasConcept C10138342 @default.
- W2023210080 hasConcept C109281498 @default.
- W2023210080 hasConcept C121332964 @default.
- W2023210080 hasConcept C131538251 @default.
- W2023210080 hasConcept C162324750 @default.
- W2023210080 hasConcept C182306322 @default.
- W2023210080 hasConcept C184779094 @default.
- W2023210080 hasConcept C185592680 @default.
- W2023210080 hasConcept C26873012 @default.
- W2023210080 hasConcept C2779451542 @default.
- W2023210080 hasConcept C39984356 @default.
- W2023210080 hasConcept C46141821 @default.
- W2023210080 hasConcept C54101563 @default.
- W2023210080 hasConcept C62520636 @default.
- W2023210080 hasConcept C69990965 @default.
- W2023210080 hasConcept C76097060 @default.
- W2023210080 hasConcept C8010536 @default.
- W2023210080 hasConceptScore W2023210080C10138342 @default.
- W2023210080 hasConceptScore W2023210080C109281498 @default.
- W2023210080 hasConceptScore W2023210080C121332964 @default.
- W2023210080 hasConceptScore W2023210080C131538251 @default.
- W2023210080 hasConceptScore W2023210080C162324750 @default.
- W2023210080 hasConceptScore W2023210080C182306322 @default.
- W2023210080 hasConceptScore W2023210080C184779094 @default.
- W2023210080 hasConceptScore W2023210080C185592680 @default.
- W2023210080 hasConceptScore W2023210080C26873012 @default.
- W2023210080 hasConceptScore W2023210080C2779451542 @default.
- W2023210080 hasConceptScore W2023210080C39984356 @default.
- W2023210080 hasConceptScore W2023210080C46141821 @default.
- W2023210080 hasConceptScore W2023210080C54101563 @default.
- W2023210080 hasConceptScore W2023210080C62520636 @default.
- W2023210080 hasConceptScore W2023210080C69990965 @default.