Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023221327> ?p ?o ?g. }
- W2023221327 endingPage "263" @default.
- W2023221327 startingPage "247" @default.
- W2023221327 abstract "Autoregressive methods provide a very useful means of characterising a seismic record; calculating the power spectra of a seismic record and determining the onset time of different classes of arrivals. The representation of a time series with an autoregressive (AR) process of low order can be applied to both multi-component and single-component traces of broadband and short period seismograms. In three-component analysis the AR coefficients are represented as second-order tensors and include potential cross-coupling between the different components of the seismogram. Power spectrum estimation using autoregressive methods is demonstrated to be effective for both signal and noise and has the advantage over FFT methods in that it is smoother and less susceptible to statistical noise. The order of the AR process required to resolve the detail of the spectra is higher for a complex signal than for the preceding noise. This variation in the weighting of the AR coefficients provides an effective way to characterise data in a similar way to Spectragrams and Vespagrams and can be achieved with as few as five AR coefficients. For three-component analysis a display of the nine AR coefficients can be readily organised with three AR-grams for each of the original data components. The various elements of the AR tensor coefficients reflect different changes in the seismogram. The presence of secondary phases is often clearer on a cross-correlation AR-gram (NE or EN) than on the autocorrelation AR-gram (NN or NE). The variations in the weighting of the AR coefficients can be exploited in two different styles of approach to onset time estimation (phase picking). In the first method, two different AR representations are constructed for different portions of the record and the onset time is estimated from the point of transition. In the second method, a single AR representation is constructed and the onset time estimation is based on the growth of a component which is not represented by the AR process. Both methods can be applied to both single and three-component data. For large impulsive P phases, both methods picked the onset time within two samples of the manually estimated onset time. For S phases, where the energy is present on all three components, three-component AR onset time estimation is preferred to that using a single component. The approach is very robust with the three-component method picking the onset time of a very small S phase on a broad-band record to within 0.5 s of the best manual estimate." @default.
- W2023221327 created "2016-06-24" @default.
- W2023221327 creator A5072363708 @default.
- W2023221327 creator A5088664218 @default.
- W2023221327 date "1999-06-01" @default.
- W2023221327 modified "2023-10-12" @default.
- W2023221327 title "Multi-component autoregressive techniques for the analysis of seismograms" @default.
- W2023221327 cites W1990943105 @default.
- W2023221327 cites W2008957283 @default.
- W2023221327 cites W2018992027 @default.
- W2023221327 cites W2074754157 @default.
- W2023221327 cites W2106822551 @default.
- W2023221327 cites W2111248943 @default.
- W2023221327 cites W2151319908 @default.
- W2023221327 cites W2162681512 @default.
- W2023221327 cites W2325850497 @default.
- W2023221327 cites W2599087843 @default.
- W2023221327 doi "https://doi.org/10.1016/s0031-9201(99)00054-0" @default.
- W2023221327 hasPublicationYear "1999" @default.
- W2023221327 type Work @default.
- W2023221327 sameAs 2023221327 @default.
- W2023221327 citedByCount "209" @default.
- W2023221327 countsByYear W20232213272012 @default.
- W2023221327 countsByYear W20232213272013 @default.
- W2023221327 countsByYear W20232213272014 @default.
- W2023221327 countsByYear W20232213272015 @default.
- W2023221327 countsByYear W20232213272016 @default.
- W2023221327 countsByYear W20232213272017 @default.
- W2023221327 countsByYear W20232213272018 @default.
- W2023221327 countsByYear W20232213272019 @default.
- W2023221327 countsByYear W20232213272020 @default.
- W2023221327 countsByYear W20232213272021 @default.
- W2023221327 countsByYear W20232213272022 @default.
- W2023221327 countsByYear W20232213272023 @default.
- W2023221327 crossrefType "journal-article" @default.
- W2023221327 hasAuthorship W2023221327A5072363708 @default.
- W2023221327 hasAuthorship W2023221327A5088664218 @default.
- W2023221327 hasConcept C105795698 @default.
- W2023221327 hasConcept C112633086 @default.
- W2023221327 hasConcept C11413529 @default.
- W2023221327 hasConcept C115961682 @default.
- W2023221327 hasConcept C121332964 @default.
- W2023221327 hasConcept C127313418 @default.
- W2023221327 hasConcept C143724316 @default.
- W2023221327 hasConcept C151730666 @default.
- W2023221327 hasConcept C154945302 @default.
- W2023221327 hasConcept C159877910 @default.
- W2023221327 hasConcept C165205528 @default.
- W2023221327 hasConcept C168167062 @default.
- W2023221327 hasConcept C169744125 @default.
- W2023221327 hasConcept C183115368 @default.
- W2023221327 hasConcept C24890656 @default.
- W2023221327 hasConcept C27438332 @default.
- W2023221327 hasConcept C30947920 @default.
- W2023221327 hasConcept C33923547 @default.
- W2023221327 hasConcept C41008148 @default.
- W2023221327 hasConcept C5297727 @default.
- W2023221327 hasConcept C75172450 @default.
- W2023221327 hasConcept C97355855 @default.
- W2023221327 hasConcept C99498987 @default.
- W2023221327 hasConceptScore W2023221327C105795698 @default.
- W2023221327 hasConceptScore W2023221327C112633086 @default.
- W2023221327 hasConceptScore W2023221327C11413529 @default.
- W2023221327 hasConceptScore W2023221327C115961682 @default.
- W2023221327 hasConceptScore W2023221327C121332964 @default.
- W2023221327 hasConceptScore W2023221327C127313418 @default.
- W2023221327 hasConceptScore W2023221327C143724316 @default.
- W2023221327 hasConceptScore W2023221327C151730666 @default.
- W2023221327 hasConceptScore W2023221327C154945302 @default.
- W2023221327 hasConceptScore W2023221327C159877910 @default.
- W2023221327 hasConceptScore W2023221327C165205528 @default.
- W2023221327 hasConceptScore W2023221327C168167062 @default.
- W2023221327 hasConceptScore W2023221327C169744125 @default.
- W2023221327 hasConceptScore W2023221327C183115368 @default.
- W2023221327 hasConceptScore W2023221327C24890656 @default.
- W2023221327 hasConceptScore W2023221327C27438332 @default.
- W2023221327 hasConceptScore W2023221327C30947920 @default.
- W2023221327 hasConceptScore W2023221327C33923547 @default.
- W2023221327 hasConceptScore W2023221327C41008148 @default.
- W2023221327 hasConceptScore W2023221327C5297727 @default.
- W2023221327 hasConceptScore W2023221327C75172450 @default.
- W2023221327 hasConceptScore W2023221327C97355855 @default.
- W2023221327 hasConceptScore W2023221327C99498987 @default.
- W2023221327 hasIssue "1-4" @default.
- W2023221327 hasLocation W20232213271 @default.
- W2023221327 hasOpenAccess W2023221327 @default.
- W2023221327 hasPrimaryLocation W20232213271 @default.
- W2023221327 hasRelatedWork W1580508919 @default.
- W2023221327 hasRelatedWork W1929514654 @default.
- W2023221327 hasRelatedWork W1983774096 @default.
- W2023221327 hasRelatedWork W2023221327 @default.
- W2023221327 hasRelatedWork W2039079567 @default.
- W2023221327 hasRelatedWork W2138686388 @default.
- W2023221327 hasRelatedWork W3125238627 @default.
- W2023221327 hasRelatedWork W4281877270 @default.
- W2023221327 hasRelatedWork W237152309 @default.
- W2023221327 hasRelatedWork W2740498927 @default.
- W2023221327 hasVolume "113" @default.