Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023231002> ?p ?o ?g. }
- W2023231002 endingPage "7011" @default.
- W2023231002 startingPage "7003" @default.
- W2023231002 abstract "The rotational diffusion of proteins is an important hydrodynamic property. Compact protein structures were found previously to exhibit hydration layer viscosity, ηloc, higher than the viscosity of bulk water, η. This implies an apparent activation energy for rotational diffusion higher than the activation energy of water viscosity, Eη = 15.4 ± 0.3 kJ/mol. In this study we examine ηloc of internally mobile proteins using 15N spin relaxation methods. We also examine the activation enthalpy, ΔH#, and activation entropy, ΔS#, for rotational diffusion. Of particular relevance are internally mobile ligand-free forms and compact ligand-bound forms of multidomain proteins. Adenylate kinase (AKeco) and Ca2+-calmodulin (Ca2+-CaM) are typical examples. For AKeco (Ca2+-CaM) we find that ΔH# is 14.5 ± 0.5 (15.7 ± 0.4) kJ/mol. For the complex of AKeco with the inhibitor AP5A (the complex of Ca2+-CaM with the peptide smMLCKp), we find that ΔH# is 18.1 ± 0.7 (18.2 ± 0.5) kJ/mol. The internally mobile outer surface protein A has ΔH# = 12.6 ± 0.8 kJ/mol, and the compact protein Staphylococcal nuclease has ΔH# = 18.8 ± 0.6 kJ/mol. For the internally mobile and compact proteins studied, ⟨∣ΔS#∣⟩ equals 62 ± 7 J/(mol K) and 44 ± 5 J/(mol K), respectively. The fact is that ηloc > η (ΔH# > Eη) for compact proteins was ascribed previously to electrostatic interactions between surface sites and water rigidifying the hydration layer. We find herein that obliteration of these interactions by domain motion leads to ηloc ∼ η, ΔH# ∼ Eη, and large activation entropy for internally mobile protein structures." @default.
- W2023231002 created "2016-06-24" @default.
- W2023231002 creator A5018499430 @default.
- W2023231002 creator A5074557429 @default.
- W2023231002 date "2009-04-22" @default.
- W2023231002 modified "2023-10-04" @default.
- W2023231002 title "Evidence for Domain Motion in Proteins Affecting Global Diffusion Properties: a Nuclear Magnetic Resonance Study" @default.
- W2023231002 cites W188610044 @default.
- W2023231002 cites W1969515643 @default.
- W2023231002 cites W1970059126 @default.
- W2023231002 cites W1971317954 @default.
- W2023231002 cites W1976051941 @default.
- W2023231002 cites W1977920448 @default.
- W2023231002 cites W1978193148 @default.
- W2023231002 cites W1979154012 @default.
- W2023231002 cites W1979826536 @default.
- W2023231002 cites W1980571928 @default.
- W2023231002 cites W1983555054 @default.
- W2023231002 cites W1989161865 @default.
- W2023231002 cites W1989752029 @default.
- W2023231002 cites W1991775910 @default.
- W2023231002 cites W1993844919 @default.
- W2023231002 cites W1995062017 @default.
- W2023231002 cites W1995273612 @default.
- W2023231002 cites W1996224306 @default.
- W2023231002 cites W1998162823 @default.
- W2023231002 cites W2000023608 @default.
- W2023231002 cites W2001502809 @default.
- W2023231002 cites W2001721557 @default.
- W2023231002 cites W2004555443 @default.
- W2023231002 cites W2006133091 @default.
- W2023231002 cites W2006135102 @default.
- W2023231002 cites W2006420842 @default.
- W2023231002 cites W2007097637 @default.
- W2023231002 cites W2011749945 @default.
- W2023231002 cites W2012167742 @default.
- W2023231002 cites W2014056820 @default.
- W2023231002 cites W2015693792 @default.
- W2023231002 cites W2019170120 @default.
- W2023231002 cites W2019886106 @default.
- W2023231002 cites W2021472469 @default.
- W2023231002 cites W2022305513 @default.
- W2023231002 cites W2023393521 @default.
- W2023231002 cites W2025088751 @default.
- W2023231002 cites W2025717854 @default.
- W2023231002 cites W2027326562 @default.
- W2023231002 cites W2028231353 @default.
- W2023231002 cites W2028968631 @default.
- W2023231002 cites W2040189649 @default.
- W2023231002 cites W2043741189 @default.
- W2023231002 cites W2045213503 @default.
- W2023231002 cites W2048822589 @default.
- W2023231002 cites W2051827748 @default.
- W2023231002 cites W2051882271 @default.
- W2023231002 cites W2055497972 @default.
- W2023231002 cites W2057047042 @default.
- W2023231002 cites W2057980421 @default.
- W2023231002 cites W2058226021 @default.
- W2023231002 cites W2058890749 @default.
- W2023231002 cites W2062517296 @default.
- W2023231002 cites W2063648400 @default.
- W2023231002 cites W2068897741 @default.
- W2023231002 cites W2069187446 @default.
- W2023231002 cites W2071188104 @default.
- W2023231002 cites W2073566521 @default.
- W2023231002 cites W2076737284 @default.
- W2023231002 cites W2077795708 @default.
- W2023231002 cites W208039688 @default.
- W2023231002 cites W2080717344 @default.
- W2023231002 cites W2086862822 @default.
- W2023231002 cites W2087050367 @default.
- W2023231002 cites W2088588309 @default.
- W2023231002 cites W2089283394 @default.
- W2023231002 cites W2096921126 @default.
- W2023231002 cites W2097268960 @default.
- W2023231002 cites W2097294533 @default.
- W2023231002 cites W2116687956 @default.
- W2023231002 cites W2121833869 @default.
- W2023231002 cites W2123167484 @default.
- W2023231002 cites W2127362915 @default.
- W2023231002 cites W2129879061 @default.
- W2023231002 cites W2131736580 @default.
- W2023231002 cites W2160294964 @default.
- W2023231002 cites W2160462930 @default.
- W2023231002 cites W2168806040 @default.
- W2023231002 cites W2169821755 @default.
- W2023231002 cites W2172712627 @default.
- W2023231002 cites W230348295 @default.
- W2023231002 cites W2334867640 @default.
- W2023231002 cites W250385500 @default.
- W2023231002 cites W267817105 @default.
- W2023231002 cites W286267401 @default.
- W2023231002 cites W4237795074 @default.
- W2023231002 cites W4243118467 @default.
- W2023231002 doi "https://doi.org/10.1021/jp9009806" @default.
- W2023231002 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19385637" @default.
- W2023231002 hasPublicationYear "2009" @default.
- W2023231002 type Work @default.