Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023244209> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2023244209 abstract "Learning data representations directly from the data itself is an approach that has shown great success in different pattern recognition problems, outperforming state-of-the-art feature extraction schemes for different tasks in computer vision, speech recognition and natural language processing. Representation learning applies unsupervised and supervised machine learning methods to large amounts of data to find building-blocks that better represent the information in it. Digitized histopathology images represents a very good testbed for representation learning since it involves large amounts of high complex, visual data. This paper presents a comparative evaluation of different supervised and unsupervised representation learning architectures to specifically address open questions on what type of learning architectures (deep or shallow), type of learning (unsupervised or supervised) is optimal. In this paper we limit ourselves to addressing these questions in the context of distinguishing between anaplastic and non-anaplastic medulloblastomas from routine haematoxylin and eosin stained images. The unsupervised approaches evaluated were sparse autoencoders and topographic reconstruct independent component analysis, and the supervised approach was convolutional neural networks. Experimental results show that shallow architectures with more neurons are better than deeper architectures without taking into account local space invariances and that topographic constraints provide useful invariant features in scale and rotations for efficient tumor differentiation." @default.
- W2023244209 created "2016-06-24" @default.
- W2023244209 creator A5027642699 @default.
- W2023244209 creator A5030925233 @default.
- W2023244209 creator A5059777037 @default.
- W2023244209 creator A5072005501 @default.
- W2023244209 creator A5080973347 @default.
- W2023244209 date "2015-01-28" @default.
- W2023244209 modified "2023-10-18" @default.
- W2023244209 title "A comparative evaluation of supervised and unsupervised representation learning approaches for anaplastic medulloblastoma differentiation" @default.
- W2023244209 cites W1975103383 @default.
- W2023244209 cites W1995460724 @default.
- W2023244209 cites W2040414046 @default.
- W2023244209 cites W2163922914 @default.
- W2023244209 cites W2496955670 @default.
- W2023244209 cites W2014818771 @default.
- W2023244209 doi "https://doi.org/10.1117/12.2073849" @default.
- W2023244209 hasPublicationYear "2015" @default.
- W2023244209 type Work @default.
- W2023244209 sameAs 2023244209 @default.
- W2023244209 citedByCount "8" @default.
- W2023244209 countsByYear W20232442092015 @default.
- W2023244209 countsByYear W20232442092016 @default.
- W2023244209 countsByYear W20232442092017 @default.
- W2023244209 countsByYear W20232442092018 @default.
- W2023244209 countsByYear W20232442092019 @default.
- W2023244209 countsByYear W20232442092020 @default.
- W2023244209 countsByYear W20232442092021 @default.
- W2023244209 countsByYear W20232442092022 @default.
- W2023244209 crossrefType "proceedings-article" @default.
- W2023244209 hasAuthorship W2023244209A5027642699 @default.
- W2023244209 hasAuthorship W2023244209A5030925233 @default.
- W2023244209 hasAuthorship W2023244209A5059777037 @default.
- W2023244209 hasAuthorship W2023244209A5072005501 @default.
- W2023244209 hasAuthorship W2023244209A5080973347 @default.
- W2023244209 hasConcept C154945302 @default.
- W2023244209 hasConcept C17744445 @default.
- W2023244209 hasConcept C199539241 @default.
- W2023244209 hasConcept C2776359362 @default.
- W2023244209 hasConcept C2780789225 @default.
- W2023244209 hasConcept C41008148 @default.
- W2023244209 hasConcept C502942594 @default.
- W2023244209 hasConcept C8038995 @default.
- W2023244209 hasConcept C86803240 @default.
- W2023244209 hasConcept C94625758 @default.
- W2023244209 hasConceptScore W2023244209C154945302 @default.
- W2023244209 hasConceptScore W2023244209C17744445 @default.
- W2023244209 hasConceptScore W2023244209C199539241 @default.
- W2023244209 hasConceptScore W2023244209C2776359362 @default.
- W2023244209 hasConceptScore W2023244209C2780789225 @default.
- W2023244209 hasConceptScore W2023244209C41008148 @default.
- W2023244209 hasConceptScore W2023244209C502942594 @default.
- W2023244209 hasConceptScore W2023244209C8038995 @default.
- W2023244209 hasConceptScore W2023244209C86803240 @default.
- W2023244209 hasConceptScore W2023244209C94625758 @default.
- W2023244209 hasLocation W20232442091 @default.
- W2023244209 hasOpenAccess W2023244209 @default.
- W2023244209 hasPrimaryLocation W20232442091 @default.
- W2023244209 hasRelatedWork W1549289070 @default.
- W2023244209 hasRelatedWork W1889934247 @default.
- W2023244209 hasRelatedWork W2104995483 @default.
- W2023244209 hasRelatedWork W2911822711 @default.
- W2023244209 hasRelatedWork W2956138382 @default.
- W2023244209 hasRelatedWork W3087576162 @default.
- W2023244209 hasRelatedWork W3123344745 @default.
- W2023244209 hasRelatedWork W3196155444 @default.
- W2023244209 hasRelatedWork W4220926404 @default.
- W2023244209 hasRelatedWork W4287665842 @default.
- W2023244209 isParatext "false" @default.
- W2023244209 isRetracted "false" @default.
- W2023244209 magId "2023244209" @default.
- W2023244209 workType "article" @default.