Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023250029> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2023250029 abstract "We prove that the attractor of the 1D quintic complex Ginzburg-Landau equation with a broken phase symmetry has strictly positive space-time entropy for an open set of parameter values. The result is obtained by studying chaotic oscillations in grids of weakly interacting solitons in a class of Ginzburg-Landau type equations. We provide an analytic proof for the existence of two-soliton configurations with chaotic temporal behavior, and construct solutions which are closed to a grid of such chaotic soliton pairs, with every pair in the grid well spatially separated from the neighboring ones for all time. The temporal evolution of the well-separated multi-soliton structures is described by a weakly coupled lattice dynamical system (LDS) for the coordinates and phases of the solitons. We develop a version of normal hyperbolicity theory for the weakly coupled LDSs with continuous time and establish for them the existence of space-time chaotic patterns similar to the Sinai-Bunimovich chaos in discrete-time LDSs. While the LDS part of the theory may be of independent interest, the main difficulty addressed in the paper concerns with lifting the space-time chaotic solutions of the LDS back to the initial PDE. The equations we consider here are space-time autonomous, i.e. we impose no spatial or temporal modulation which could prevent the individual solitons in the grid from drifting towards each other and destroying the well-separated grid structure in a finite time. We however manage to show that the set of space-time chaotic solutions for which the random soliton drift is arrested is large enough, so the corresponding space-time entropy is strictly positive." @default.
- W2023250029 created "2016-06-24" @default.
- W2023250029 creator A5044060141 @default.
- W2023250029 creator A5084996461 @default.
- W2023250029 date "2010-02-17" @default.
- W2023250029 modified "2023-09-27" @default.
- W2023250029 title "Analytical Proof of Space-Time Chaos in Ginzburg-Landau Equations" @default.
- W2023250029 cites W1582770960 @default.
- W2023250029 cites W169642105 @default.
- W2023250029 cites W1966523973 @default.
- W2023250029 cites W1992737652 @default.
- W2023250029 cites W1998618993 @default.
- W2023250029 cites W2023590249 @default.
- W2023250029 cites W2034632514 @default.
- W2023250029 cites W2040935629 @default.
- W2023250029 cites W2056963858 @default.
- W2023250029 cites W2060300725 @default.
- W2023250029 cites W2076717053 @default.
- W2023250029 cites W2081817659 @default.
- W2023250029 cites W2092680287 @default.
- W2023250029 cites W2119804045 @default.
- W2023250029 doi "https://doi.org/10.48550/arxiv.1002.3406" @default.
- W2023250029 hasPublicationYear "2010" @default.
- W2023250029 type Work @default.
- W2023250029 sameAs 2023250029 @default.
- W2023250029 citedByCount "0" @default.
- W2023250029 crossrefType "posted-content" @default.
- W2023250029 hasAuthorship W2023250029A5044060141 @default.
- W2023250029 hasAuthorship W2023250029A5084996461 @default.
- W2023250029 hasBestOaLocation W20232500291 @default.
- W2023250029 hasConcept C111919701 @default.
- W2023250029 hasConcept C121332964 @default.
- W2023250029 hasConcept C121864883 @default.
- W2023250029 hasConcept C130187892 @default.
- W2023250029 hasConcept C134306372 @default.
- W2023250029 hasConcept C151342819 @default.
- W2023250029 hasConcept C154945302 @default.
- W2023250029 hasConcept C164380108 @default.
- W2023250029 hasConcept C2777052490 @default.
- W2023250029 hasConcept C2778572836 @default.
- W2023250029 hasConcept C33923547 @default.
- W2023250029 hasConcept C41008148 @default.
- W2023250029 hasConcept C62520636 @default.
- W2023250029 hasConcept C74650414 @default.
- W2023250029 hasConceptScore W2023250029C111919701 @default.
- W2023250029 hasConceptScore W2023250029C121332964 @default.
- W2023250029 hasConceptScore W2023250029C121864883 @default.
- W2023250029 hasConceptScore W2023250029C130187892 @default.
- W2023250029 hasConceptScore W2023250029C134306372 @default.
- W2023250029 hasConceptScore W2023250029C151342819 @default.
- W2023250029 hasConceptScore W2023250029C154945302 @default.
- W2023250029 hasConceptScore W2023250029C164380108 @default.
- W2023250029 hasConceptScore W2023250029C2777052490 @default.
- W2023250029 hasConceptScore W2023250029C2778572836 @default.
- W2023250029 hasConceptScore W2023250029C33923547 @default.
- W2023250029 hasConceptScore W2023250029C41008148 @default.
- W2023250029 hasConceptScore W2023250029C62520636 @default.
- W2023250029 hasConceptScore W2023250029C74650414 @default.
- W2023250029 hasLocation W20232500291 @default.
- W2023250029 hasLocation W20232500292 @default.
- W2023250029 hasLocation W20232500293 @default.
- W2023250029 hasOpenAccess W2023250029 @default.
- W2023250029 hasPrimaryLocation W20232500291 @default.
- W2023250029 hasRelatedWork W2009685707 @default.
- W2023250029 hasRelatedWork W2032086996 @default.
- W2023250029 hasRelatedWork W2063774910 @default.
- W2023250029 hasRelatedWork W2075700314 @default.
- W2023250029 hasRelatedWork W2090759653 @default.
- W2023250029 hasRelatedWork W2144002436 @default.
- W2023250029 hasRelatedWork W2352947255 @default.
- W2023250029 hasRelatedWork W2365947079 @default.
- W2023250029 hasRelatedWork W2393673365 @default.
- W2023250029 hasRelatedWork W2609150522 @default.
- W2023250029 isParatext "false" @default.
- W2023250029 isRetracted "false" @default.
- W2023250029 magId "2023250029" @default.
- W2023250029 workType "article" @default.