Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023258178> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2023258178 endingPage "130" @default.
- W2023258178 startingPage "106" @default.
- W2023258178 abstract "Solving an inverse problem means determining the parameters of a model given a set of measurements. In solving many practical inverse problems, accounting for the uncertainty of the solution is very important in aiding decision-making. A standard approach to do this begins by choosing a model parametrization and then using a Bayesian approach to make inferences on the model parameters from measurement data. However, this quantified uncertainty is a function of the model parametrization and for many inverse problems; there are many model parametrizations that account for the data equally well. A well-known approach to accounting for model uncertainty is Bayesian model averaging, where many model parametrizations are considered. Significant computational costs are associated with this method because one must compute the posterior distribution for each model parametrization. We consider a family of model parametrizations given by decimated wavelet bases. By decimated wavelet basis we mean a subset of the model's coordinates in a wavelet basis. For linear inverse problems, we demonstrate new fast algorithms for updating the prior and posterior covariance matrices when wavelet model parameters are added or deleted from the decimated basis. We also introduce algorithms for updating the determinant and Cholesky decomposition of the model's covariance matrices. These algorithms deliver order of magnitude savings over computing these covariance matrices from scratch and make Bayesian model averaging a realistic approach for accounting for uncertainty in inverse problem solutions. In order to clarify the role of our model updates, we show that our wavelet model update algorithms update the model's posterior distribution after modifying the model's local spatial resolution, whereas Kalman filters provide a means of updating a model when assimilating new measurement data. These results show a major advantage to be gained by parametrizing models with wavelets and represent a significant step forward in addressing the challenging computational problem of dealing with large models that account for uncertainty." @default.
- W2023258178 created "2016-06-24" @default.
- W2023258178 creator A5004419907 @default.
- W2023258178 creator A5080018804 @default.
- W2023258178 date "2005-01-01" @default.
- W2023258178 modified "2023-10-17" @default.
- W2023258178 title "Fast Model Updates Using Wavelets" @default.
- W2023258178 cites W1603903339 @default.
- W2023258178 cites W2020781433 @default.
- W2023258178 cites W2021589053 @default.
- W2023258178 cites W2042535472 @default.
- W2023258178 cites W2056760934 @default.
- W2023258178 cites W2058990353 @default.
- W2023258178 cites W2069624343 @default.
- W2023258178 cites W2094585768 @default.
- W2023258178 cites W2106706098 @default.
- W2023258178 cites W2135594087 @default.
- W2023258178 cites W2138309709 @default.
- W2023258178 cites W2152415136 @default.
- W2023258178 cites W2153696514 @default.
- W2023258178 cites W4245531751 @default.
- W2023258178 cites W4299551239 @default.
- W2023258178 cites W4301621763 @default.
- W2023258178 doi "https://doi.org/10.1137/030601466" @default.
- W2023258178 hasPublicationYear "2005" @default.
- W2023258178 type Work @default.
- W2023258178 sameAs 2023258178 @default.
- W2023258178 citedByCount "5" @default.
- W2023258178 countsByYear W20232581782016 @default.
- W2023258178 countsByYear W20232581782020 @default.
- W2023258178 crossrefType "journal-article" @default.
- W2023258178 hasAuthorship W2023258178A5004419907 @default.
- W2023258178 hasAuthorship W2023258178A5080018804 @default.
- W2023258178 hasConcept C105795698 @default.
- W2023258178 hasConcept C107673813 @default.
- W2023258178 hasConcept C11413529 @default.
- W2023258178 hasConcept C121332964 @default.
- W2023258178 hasConcept C12426560 @default.
- W2023258178 hasConcept C126255220 @default.
- W2023258178 hasConcept C134306372 @default.
- W2023258178 hasConcept C135252773 @default.
- W2023258178 hasConcept C154945302 @default.
- W2023258178 hasConcept C158693339 @default.
- W2023258178 hasConcept C160234255 @default.
- W2023258178 hasConcept C178650346 @default.
- W2023258178 hasConcept C202887219 @default.
- W2023258178 hasConcept C207467116 @default.
- W2023258178 hasConcept C2524010 @default.
- W2023258178 hasConcept C28826006 @default.
- W2023258178 hasConcept C33923547 @default.
- W2023258178 hasConcept C34727166 @default.
- W2023258178 hasConcept C41008148 @default.
- W2023258178 hasConcept C47432892 @default.
- W2023258178 hasConcept C5917680 @default.
- W2023258178 hasConcept C62520636 @default.
- W2023258178 hasConcept C74902906 @default.
- W2023258178 hasConceptScore W2023258178C105795698 @default.
- W2023258178 hasConceptScore W2023258178C107673813 @default.
- W2023258178 hasConceptScore W2023258178C11413529 @default.
- W2023258178 hasConceptScore W2023258178C121332964 @default.
- W2023258178 hasConceptScore W2023258178C12426560 @default.
- W2023258178 hasConceptScore W2023258178C126255220 @default.
- W2023258178 hasConceptScore W2023258178C134306372 @default.
- W2023258178 hasConceptScore W2023258178C135252773 @default.
- W2023258178 hasConceptScore W2023258178C154945302 @default.
- W2023258178 hasConceptScore W2023258178C158693339 @default.
- W2023258178 hasConceptScore W2023258178C160234255 @default.
- W2023258178 hasConceptScore W2023258178C178650346 @default.
- W2023258178 hasConceptScore W2023258178C202887219 @default.
- W2023258178 hasConceptScore W2023258178C207467116 @default.
- W2023258178 hasConceptScore W2023258178C2524010 @default.
- W2023258178 hasConceptScore W2023258178C28826006 @default.
- W2023258178 hasConceptScore W2023258178C33923547 @default.
- W2023258178 hasConceptScore W2023258178C34727166 @default.
- W2023258178 hasConceptScore W2023258178C41008148 @default.
- W2023258178 hasConceptScore W2023258178C47432892 @default.
- W2023258178 hasConceptScore W2023258178C5917680 @default.
- W2023258178 hasConceptScore W2023258178C62520636 @default.
- W2023258178 hasConceptScore W2023258178C74902906 @default.
- W2023258178 hasIssue "1" @default.
- W2023258178 hasLocation W20232581781 @default.
- W2023258178 hasOpenAccess W2023258178 @default.
- W2023258178 hasPrimaryLocation W20232581781 @default.
- W2023258178 hasRelatedWork W2063512590 @default.
- W2023258178 hasRelatedWork W2079508979 @default.
- W2023258178 hasRelatedWork W2104481679 @default.
- W2023258178 hasRelatedWork W2107649022 @default.
- W2023258178 hasRelatedWork W2356488190 @default.
- W2023258178 hasRelatedWork W2374847384 @default.
- W2023258178 hasRelatedWork W2403987929 @default.
- W2023258178 hasRelatedWork W2784059180 @default.
- W2023258178 hasRelatedWork W604331851 @default.
- W2023258178 hasRelatedWork W2966537581 @default.
- W2023258178 hasVolume "3" @default.
- W2023258178 isParatext "false" @default.
- W2023258178 isRetracted "false" @default.
- W2023258178 magId "2023258178" @default.
- W2023258178 workType "article" @default.