Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023270843> ?p ?o ?g. }
- W2023270843 abstract "Abstract Background The procedural aspects of genome sequencing and assembly have become relatively inexpensive, yet the full, accurate structural annotation of these genomes remains a challenge. Next-generation sequencing transcriptomics (RNA-Seq), global microarrays, and tandem mass spectrometry (MS/MS)-based proteomics have demonstrated immense value to genome curators as individual sources of information, however, integrating these data types to validate and improve structural annotation remains a major challenge. Current visual and statistical analytic tools are focused on a single data type, or existing software tools are retrofitted to analyze new data forms. We present Visual Exploration and Statistics to Promote Annotation (VESPA) is a new interactive visual analysis software tool focused on assisting scientists with the annotation of prokaryotic genomes though the integration of proteomics and transcriptomics data with current genome location coordinates. Results VESPA is a desktop Java™ application that integrates high-throughput proteomics data (peptide-centric) and transcriptomics (probe or RNA-Seq) data into a genomic context, all of which can be visualized at three levels of genomic resolution. Data is interrogated via searches linked to the genome visualizations to find regions with high likelihood of mis-annotation. Search results are linked to exports for further validation outside of VESPA or potential coding-regions can be analyzed concurrently with the software through interaction with BLAST. VESPA is demonstrated on two use cases ( Yersinia pestis Pestoides F and Synechococcus sp. PCC 7002) to demonstrate the rapid manner in which mis-annotations can be found and explored in VESPA using either proteomics data alone, or in combination with transcriptomic data. Conclusions VESPA is an interactive visual analytics tool that integrates high-throughput data into a genomic context to facilitate the discovery of structural mis-annotations in prokaryotic genomes. Data is evaluated via visual analysis across multiple levels of genomic resolution, linked searches and interaction with existing bioinformatics tools. We highlight the novel functionality of VESPA and core programming requirements for visualization of these large heterogeneous datasets for a client-side application. The software is freely available at https://www.biopilot.org/docs/Software/Vespa.php ." @default.
- W2023270843 created "2016-06-24" @default.
- W2023270843 creator A5020047782 @default.
- W2023270843 creator A5032341485 @default.
- W2023270843 creator A5040201243 @default.
- W2023270843 creator A5040788704 @default.
- W2023270843 creator A5052902376 @default.
- W2023270843 creator A5058577320 @default.
- W2023270843 creator A5068615364 @default.
- W2023270843 creator A5070140192 @default.
- W2023270843 creator A5071430156 @default.
- W2023270843 creator A5076449460 @default.
- W2023270843 creator A5078301027 @default.
- W2023270843 creator A5089245822 @default.
- W2023270843 date "2012-04-05" @default.
- W2023270843 modified "2023-10-16" @default.
- W2023270843 title "VESPA: software to facilitate genomic annotation of prokaryotic organisms through integration of proteomic and transcriptomic data" @default.
- W2023270843 cites W1966450437 @default.
- W2023270843 cites W2001014988 @default.
- W2023270843 cites W2003137843 @default.
- W2023270843 cites W2017389797 @default.
- W2023270843 cites W2021341670 @default.
- W2023270843 cites W2029110417 @default.
- W2023270843 cites W2032443342 @default.
- W2023270843 cites W2037334311 @default.
- W2023270843 cites W2053943711 @default.
- W2023270843 cites W2059572899 @default.
- W2023270843 cites W2095826175 @default.
- W2023270843 cites W2107318366 @default.
- W2023270843 cites W2108234281 @default.
- W2023270843 cites W2117510233 @default.
- W2023270843 cites W2120987638 @default.
- W2023270843 cites W2122270655 @default.
- W2023270843 cites W2128784468 @default.
- W2023270843 cites W2129148077 @default.
- W2023270843 cites W2131807022 @default.
- W2023270843 cites W2137043026 @default.
- W2023270843 cites W2143797649 @default.
- W2023270843 cites W2144522394 @default.
- W2023270843 cites W2147830145 @default.
- W2023270843 cites W2158714788 @default.
- W2023270843 cites W2160904896 @default.
- W2023270843 cites W2161679242 @default.
- W2023270843 cites W2164824419 @default.
- W2023270843 cites W2167155938 @default.
- W2023270843 cites W2170488656 @default.
- W2023270843 cites W2171214502 @default.
- W2023270843 cites W4247610414 @default.
- W2023270843 cites W4247827554 @default.
- W2023270843 cites W4360754243 @default.
- W2023270843 doi "https://doi.org/10.1186/1471-2164-13-131" @default.
- W2023270843 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3364912" @default.
- W2023270843 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22480257" @default.
- W2023270843 hasPublicationYear "2012" @default.
- W2023270843 type Work @default.
- W2023270843 sameAs 2023270843 @default.
- W2023270843 citedByCount "31" @default.
- W2023270843 countsByYear W20232708432012 @default.
- W2023270843 countsByYear W20232708432013 @default.
- W2023270843 countsByYear W20232708432014 @default.
- W2023270843 countsByYear W20232708432015 @default.
- W2023270843 countsByYear W20232708432016 @default.
- W2023270843 countsByYear W20232708432017 @default.
- W2023270843 countsByYear W20232708432018 @default.
- W2023270843 countsByYear W20232708432020 @default.
- W2023270843 countsByYear W20232708432021 @default.
- W2023270843 countsByYear W20232708432022 @default.
- W2023270843 crossrefType "journal-article" @default.
- W2023270843 hasAuthorship W2023270843A5020047782 @default.
- W2023270843 hasAuthorship W2023270843A5032341485 @default.
- W2023270843 hasAuthorship W2023270843A5040201243 @default.
- W2023270843 hasAuthorship W2023270843A5040788704 @default.
- W2023270843 hasAuthorship W2023270843A5052902376 @default.
- W2023270843 hasAuthorship W2023270843A5058577320 @default.
- W2023270843 hasAuthorship W2023270843A5068615364 @default.
- W2023270843 hasAuthorship W2023270843A5070140192 @default.
- W2023270843 hasAuthorship W2023270843A5071430156 @default.
- W2023270843 hasAuthorship W2023270843A5076449460 @default.
- W2023270843 hasAuthorship W2023270843A5078301027 @default.
- W2023270843 hasAuthorship W2023270843A5089245822 @default.
- W2023270843 hasBestOaLocation W20232708431 @default.
- W2023270843 hasConcept C104317684 @default.
- W2023270843 hasConcept C124101348 @default.
- W2023270843 hasConcept C141231307 @default.
- W2023270843 hasConcept C145741570 @default.
- W2023270843 hasConcept C150194340 @default.
- W2023270843 hasConcept C189206191 @default.
- W2023270843 hasConcept C199360897 @default.
- W2023270843 hasConcept C2776321320 @default.
- W2023270843 hasConcept C2777904410 @default.
- W2023270843 hasConcept C2781148417 @default.
- W2023270843 hasConcept C2908923196 @default.
- W2023270843 hasConcept C36464697 @default.
- W2023270843 hasConcept C41008148 @default.
- W2023270843 hasConcept C46111723 @default.
- W2023270843 hasConcept C54355233 @default.
- W2023270843 hasConcept C60644358 @default.
- W2023270843 hasConcept C70721500 @default.
- W2023270843 hasConcept C86803240 @default.
- W2023270843 hasConcept C89566754 @default.