Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023290810> ?p ?o ?g. }
- W2023290810 endingPage "3167" @default.
- W2023290810 startingPage "3157" @default.
- W2023290810 abstract "In designing phase of systems, design parameters such as component reliabilities and cost are normally under uncertainties. This paper presents a methodology for solving the multi-objective reliability optimization model in which parameters are considered as imprecise in terms of triangular interval data. The uncertain multi-objective optimization model is converted into deterministic multi-objective model including left, center and right interval functions. A conflicting nature between the objectives is resolved with the help of intuitionistic fuzzy programming technique by considering linear as well as the nonlinear degree of membership and non-membership functions. The resultants max–min problem has been solved with particle swarm optimization (PSO) and compared their results with genetic algorithm (GA). Finally, a numerical instance is presented to show the performance of the proposed approach." @default.
- W2023290810 created "2016-06-24" @default.
- W2023290810 creator A5024703874 @default.
- W2023290810 creator A5054194585 @default.
- W2023290810 creator A5069695918 @default.
- W2023290810 creator A5083670872 @default.
- W2023290810 date "2014-06-01" @default.
- W2023290810 modified "2023-10-02" @default.
- W2023290810 title "Intuitionistic fuzzy optimization technique for solving multi-objective reliability optimization problems in interval environment" @default.
- W2023290810 cites W1816134045 @default.
- W2023290810 cites W1966808269 @default.
- W2023290810 cites W1976868141 @default.
- W2023290810 cites W1979212261 @default.
- W2023290810 cites W1980564456 @default.
- W2023290810 cites W1982618675 @default.
- W2023290810 cites W1984308300 @default.
- W2023290810 cites W1987177581 @default.
- W2023290810 cites W1991382611 @default.
- W2023290810 cites W1998265648 @default.
- W2023290810 cites W2011886238 @default.
- W2023290810 cites W2012393080 @default.
- W2023290810 cites W2017846705 @default.
- W2023290810 cites W2023363538 @default.
- W2023290810 cites W2029377923 @default.
- W2023290810 cites W2031241748 @default.
- W2023290810 cites W2036524641 @default.
- W2023290810 cites W2037209710 @default.
- W2023290810 cites W2046731863 @default.
- W2023290810 cites W2063027621 @default.
- W2023290810 cites W2065442155 @default.
- W2023290810 cites W2067172807 @default.
- W2023290810 cites W2078589821 @default.
- W2023290810 cites W2099469179 @default.
- W2023290810 cites W2109202810 @default.
- W2023290810 cites W2109364787 @default.
- W2023290810 cites W2110642914 @default.
- W2023290810 cites W2111358144 @default.
- W2023290810 cites W2136692556 @default.
- W2023290810 cites W2139363347 @default.
- W2023290810 cites W2152195021 @default.
- W2023290810 cites W2169245194 @default.
- W2023290810 cites W2293737317 @default.
- W2023290810 cites W4211007335 @default.
- W2023290810 doi "https://doi.org/10.1016/j.eswa.2013.11.014" @default.
- W2023290810 hasPublicationYear "2014" @default.
- W2023290810 type Work @default.
- W2023290810 sameAs 2023290810 @default.
- W2023290810 citedByCount "129" @default.
- W2023290810 countsByYear W20232908102014 @default.
- W2023290810 countsByYear W20232908102015 @default.
- W2023290810 countsByYear W20232908102016 @default.
- W2023290810 countsByYear W20232908102017 @default.
- W2023290810 countsByYear W20232908102018 @default.
- W2023290810 countsByYear W20232908102019 @default.
- W2023290810 countsByYear W20232908102020 @default.
- W2023290810 countsByYear W20232908102021 @default.
- W2023290810 countsByYear W20232908102022 @default.
- W2023290810 countsByYear W20232908102023 @default.
- W2023290810 crossrefType "journal-article" @default.
- W2023290810 hasAuthorship W2023290810A5024703874 @default.
- W2023290810 hasAuthorship W2023290810A5054194585 @default.
- W2023290810 hasAuthorship W2023290810A5069695918 @default.
- W2023290810 hasAuthorship W2023290810A5083670872 @default.
- W2023290810 hasConcept C114614502 @default.
- W2023290810 hasConcept C115527620 @default.
- W2023290810 hasConcept C121332964 @default.
- W2023290810 hasConcept C126255220 @default.
- W2023290810 hasConcept C137836250 @default.
- W2023290810 hasConcept C154945302 @default.
- W2023290810 hasConcept C158622935 @default.
- W2023290810 hasConcept C163258240 @default.
- W2023290810 hasConcept C168167062 @default.
- W2023290810 hasConcept C2778067643 @default.
- W2023290810 hasConcept C33923547 @default.
- W2023290810 hasConcept C41008148 @default.
- W2023290810 hasConcept C43214815 @default.
- W2023290810 hasConcept C4935549 @default.
- W2023290810 hasConcept C58166 @default.
- W2023290810 hasConcept C62520636 @default.
- W2023290810 hasConcept C85617194 @default.
- W2023290810 hasConcept C8880873 @default.
- W2023290810 hasConcept C97355855 @default.
- W2023290810 hasConceptScore W2023290810C114614502 @default.
- W2023290810 hasConceptScore W2023290810C115527620 @default.
- W2023290810 hasConceptScore W2023290810C121332964 @default.
- W2023290810 hasConceptScore W2023290810C126255220 @default.
- W2023290810 hasConceptScore W2023290810C137836250 @default.
- W2023290810 hasConceptScore W2023290810C154945302 @default.
- W2023290810 hasConceptScore W2023290810C158622935 @default.
- W2023290810 hasConceptScore W2023290810C163258240 @default.
- W2023290810 hasConceptScore W2023290810C168167062 @default.
- W2023290810 hasConceptScore W2023290810C2778067643 @default.
- W2023290810 hasConceptScore W2023290810C33923547 @default.
- W2023290810 hasConceptScore W2023290810C41008148 @default.
- W2023290810 hasConceptScore W2023290810C43214815 @default.
- W2023290810 hasConceptScore W2023290810C4935549 @default.
- W2023290810 hasConceptScore W2023290810C58166 @default.
- W2023290810 hasConceptScore W2023290810C62520636 @default.