Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023306912> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2023306912 abstract "Analgebraic flow for a digraphD=(V, A) is a generalization of acirculation forD in which the operation of addition is replaced by a binary operation defined over a commutative semigroup. A substantial literature exists in which flow-theory has been studied in this more general setting. For example, Hamacher has generalized the classical max-flow min-cut theorem to algebraic flows. In this paper, we show thatx is an algebraic flow if and only if for each pair of distinct verticess andt, the value of a maximum (s, t) algebraic flow with capacitiesx is equal to the value of a maximum (t, s) algebraic flow with capacitiesx. This characterization, which we callflow-symmetry, is a common generalization of two previous flow-symmetric results that have appeared in the literature. First, Lovasz, by proving a conjecture of Kotzig, showed that flow-symmetry holds for the usual semigroup operation of addition of non-negative reals. That is, a vectorx≥0 defined on the arc setA is a circulation forD if and only if for each pair of distinct verticess andt the value of a maximum (s, t) flow inD with capacitiesx equals the value of a maximum (t, s) flow inD with capacitiesx. Second, in a previous paper, we showed that the analogous result holds for the semigroup in which the summation operator is replaced by the maximization operator. That is,x is amax-balanced flow if and only if for each pair of distinct verticess andt, the value of a maximum bottleneck (s, t) path inD with capacitiesx equals the value of a maximum bottleneck (t, s) path inD with capacitiesx. In this paper, we show that these results are each special cases of our characterization of an algebraic flow." @default.
- W2023306912 created "2016-06-24" @default.
- W2023306912 creator A5011957337 @default.
- W2023306912 creator A5082415334 @default.
- W2023306912 date "1993-10-01" @default.
- W2023306912 modified "2023-09-27" @default.
- W2023306912 title "Flow symmetry and algebraic flows" @default.
- W2023306912 cites W1965021403 @default.
- W2023306912 cites W1968351805 @default.
- W2023306912 cites W1997867453 @default.
- W2023306912 cites W4205775998 @default.
- W2023306912 doi "https://doi.org/10.1007/bf01416607" @default.
- W2023306912 hasPublicationYear "1993" @default.
- W2023306912 type Work @default.
- W2023306912 sameAs 2023306912 @default.
- W2023306912 citedByCount "1" @default.
- W2023306912 countsByYear W20233069122018 @default.
- W2023306912 crossrefType "journal-article" @default.
- W2023306912 hasAuthorship W2023306912A5011957337 @default.
- W2023306912 hasAuthorship W2023306912A5082415334 @default.
- W2023306912 hasConcept C104317684 @default.
- W2023306912 hasConcept C114614502 @default.
- W2023306912 hasConcept C118615104 @default.
- W2023306912 hasConcept C134306372 @default.
- W2023306912 hasConcept C158448853 @default.
- W2023306912 hasConcept C17020691 @default.
- W2023306912 hasConcept C177148314 @default.
- W2023306912 hasConcept C185592680 @default.
- W2023306912 hasConcept C207405024 @default.
- W2023306912 hasConcept C2524010 @default.
- W2023306912 hasConcept C2780990831 @default.
- W2023306912 hasConcept C33923547 @default.
- W2023306912 hasConcept C38349280 @default.
- W2023306912 hasConcept C55493867 @default.
- W2023306912 hasConcept C86339819 @default.
- W2023306912 hasConcept C9376300 @default.
- W2023306912 hasConceptScore W2023306912C104317684 @default.
- W2023306912 hasConceptScore W2023306912C114614502 @default.
- W2023306912 hasConceptScore W2023306912C118615104 @default.
- W2023306912 hasConceptScore W2023306912C134306372 @default.
- W2023306912 hasConceptScore W2023306912C158448853 @default.
- W2023306912 hasConceptScore W2023306912C17020691 @default.
- W2023306912 hasConceptScore W2023306912C177148314 @default.
- W2023306912 hasConceptScore W2023306912C185592680 @default.
- W2023306912 hasConceptScore W2023306912C207405024 @default.
- W2023306912 hasConceptScore W2023306912C2524010 @default.
- W2023306912 hasConceptScore W2023306912C2780990831 @default.
- W2023306912 hasConceptScore W2023306912C33923547 @default.
- W2023306912 hasConceptScore W2023306912C38349280 @default.
- W2023306912 hasConceptScore W2023306912C55493867 @default.
- W2023306912 hasConceptScore W2023306912C86339819 @default.
- W2023306912 hasConceptScore W2023306912C9376300 @default.
- W2023306912 hasLocation W20233069121 @default.
- W2023306912 hasOpenAccess W2023306912 @default.
- W2023306912 hasPrimaryLocation W20233069121 @default.
- W2023306912 hasRelatedWork W1589302522 @default.
- W2023306912 hasRelatedWork W1642453141 @default.
- W2023306912 hasRelatedWork W1754577265 @default.
- W2023306912 hasRelatedWork W1809623040 @default.
- W2023306912 hasRelatedWork W1854107104 @default.
- W2023306912 hasRelatedWork W1982139864 @default.
- W2023306912 hasRelatedWork W1991783328 @default.
- W2023306912 hasRelatedWork W1995764479 @default.
- W2023306912 hasRelatedWork W2016479064 @default.
- W2023306912 hasRelatedWork W2022386131 @default.
- W2023306912 hasRelatedWork W2022951081 @default.
- W2023306912 hasRelatedWork W2037707119 @default.
- W2023306912 hasRelatedWork W2054907494 @default.
- W2023306912 hasRelatedWork W2098005496 @default.
- W2023306912 hasRelatedWork W2134485284 @default.
- W2023306912 hasRelatedWork W2316652945 @default.
- W2023306912 hasRelatedWork W2374940625 @default.
- W2023306912 hasRelatedWork W247030484 @default.
- W2023306912 hasRelatedWork W43937459 @default.
- W2023306912 hasRelatedWork W897603197 @default.
- W2023306912 isParatext "false" @default.
- W2023306912 isRetracted "false" @default.
- W2023306912 magId "2023306912" @default.
- W2023306912 workType "article" @default.