Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023307428> ?p ?o ?g. }
- W2023307428 endingPage "84" @default.
- W2023307428 startingPage "70" @default.
- W2023307428 abstract "Abstract Octenol (1‐octen‐3‐ol), acetone, 4‐methylphenol, 3‐n‐propylphenol, and other potential attractants (human urine, stable fly faeces), as well as guiacol, creosol (potential repellents), were tested as baits for biting flies in North America using standard phthalogen blue IF3GM cotton Nzi traps, or similar commercial polyester traps. Baits were tested during the summers of 2001–04 at a residence in Canada and during January–August 2001 at a dairy in the U.S.A. Behaviour in the presence of octenol was also studied by intercepting flies approaching a trap through the use of transparent adhesive film. Analogous bait and/or trap comparisons were conducted in natural settings in June 1996 in Kenya and in September–December 1997 in Ethiopia. In Canada, catches of five of six common tabanids ( Tabanus similis Macquart, Tabanus quinquevittatus Wiedemann, Hybomitra lasiophthalma [Macquart], Chrysops univittatus Macquart, Chrysops aberrans Philip) and the stable fly Stomoxys calcitrans L. were increased significantly by 1.2–2.1 times with octenol (1.5 mg/h). Catches of T. quinquevittatus and S. calcitrans were 3.5–3.6 times higher on a sticky enclosure surrounding a trap baited with octenol. No other baits or bait combinations had an effect on trap catches in North America. In Ethiopia, standard Nzi traps baited with a combination of acetone, octenol and cattle urine caught 1.8–9.9 times as many Stomoxys as similarly baited epsilon, pyramidal, NG2G, S3, biconical and canopy traps, in order of decreasing catch. When baits were compared, catches in Nzi traps of six stable fly species, including S. calcitrans , were not affected by octenol (released at approximately 1 mg/h), or cattle urine (140 mg/h), used alone or in combination with acetone (890 mg/h). Acetone alone, however, significantly increased the catches of common Stomoxys such as Stomoxys niger niger Macquart, Stomoxys taeniatus Bigot, and S. calcitrans by 2.4, 1.6 and 1.9 times, respectively. Catches of Glossina pallidipes Austen were increased significantly in traps baited with acetone, urine or octenol, or any combination, relative to those in unbaited traps (1.4–3.6x). Catches of Glossina morsitans submorsitans Newstead were increased significantly by 1.5–1.7 times, but only when baits were used individually. Unlike other studies with East African tsetse, catches of both tsetse species with the complete bait combination (acetone, urine and octenol) did not differ from those in unbaited traps. Experiments with an incomplete ring of electric nets surrounding a Nzi trap, and a new approach using a sticky enclosure made from transparent adhesive film, revealed diverse responses to artificial objects and baits among biting flies. In Kenya, daily trap efficiency estimates for traps baited with either carbon dioxide (6 L/min) or a combination of acetone, cattle urine and octenol were 21–27% for G. pallidipes , 7–36% for Glossina longipennis Corti, 27–33% for S. n. niger , and 19–33% for Stomoxys niger bilineatus Grünberg, assuming 100% electrocution efficiency. Actual trap efficiencies may have been lower, given observed outside : inside electric net catch ratios of 0.6 : 1.6. Observed ratios averaged 54% of expected values, with 10 of 15 possible ratios less than the minimum possible value of 1.0." @default.
- W2023307428 created "2016-06-24" @default.
- W2023307428 creator A5031058770 @default.
- W2023307428 creator A5076172610 @default.
- W2023307428 creator A5083889984 @default.
- W2023307428 date "2007-03-01" @default.
- W2023307428 modified "2023-10-16" @default.
- W2023307428 title "Tsetse and other biting fly responses to Nzi traps baited with octenol, phenols and acetone" @default.
- W2023307428 cites W131198709 @default.
- W2023307428 cites W1603555410 @default.
- W2023307428 cites W1904826200 @default.
- W2023307428 cites W1969225304 @default.
- W2023307428 cites W1971608502 @default.
- W2023307428 cites W1975645314 @default.
- W2023307428 cites W1985275614 @default.
- W2023307428 cites W1985778994 @default.
- W2023307428 cites W1987665174 @default.
- W2023307428 cites W1993485240 @default.
- W2023307428 cites W1999003223 @default.
- W2023307428 cites W2013032704 @default.
- W2023307428 cites W2025676613 @default.
- W2023307428 cites W2038547983 @default.
- W2023307428 cites W2043778196 @default.
- W2023307428 cites W2046683696 @default.
- W2023307428 cites W2052942780 @default.
- W2023307428 cites W2057880912 @default.
- W2023307428 cites W2060981596 @default.
- W2023307428 cites W2076856491 @default.
- W2023307428 cites W2088523986 @default.
- W2023307428 cites W2093803462 @default.
- W2023307428 cites W2095043979 @default.
- W2023307428 cites W2095189909 @default.
- W2023307428 cites W2096312850 @default.
- W2023307428 cites W2096920012 @default.
- W2023307428 cites W2098859303 @default.
- W2023307428 cites W2101003418 @default.
- W2023307428 cites W2102486490 @default.
- W2023307428 cites W2103926906 @default.
- W2023307428 cites W2105397271 @default.
- W2023307428 cites W2108462287 @default.
- W2023307428 cites W2121506558 @default.
- W2023307428 cites W2142041634 @default.
- W2023307428 cites W2142295161 @default.
- W2023307428 cites W2143936310 @default.
- W2023307428 cites W2143991403 @default.
- W2023307428 cites W2145690858 @default.
- W2023307428 cites W2146817961 @default.
- W2023307428 cites W2155285000 @default.
- W2023307428 cites W2158046387 @default.
- W2023307428 cites W2159031675 @default.
- W2023307428 cites W2159212777 @default.
- W2023307428 cites W2162360260 @default.
- W2023307428 cites W2162824083 @default.
- W2023307428 cites W2167959522 @default.
- W2023307428 cites W2170780313 @default.
- W2023307428 cites W2205602273 @default.
- W2023307428 cites W2272637759 @default.
- W2023307428 cites W2321032883 @default.
- W2023307428 cites W4375844788 @default.
- W2023307428 cites W3142408735 @default.
- W2023307428 doi "https://doi.org/10.1111/j.1365-2915.2007.00665.x" @default.
- W2023307428 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17373949" @default.
- W2023307428 hasPublicationYear "2007" @default.
- W2023307428 type Work @default.
- W2023307428 sameAs 2023307428 @default.
- W2023307428 citedByCount "43" @default.
- W2023307428 countsByYear W20233074282012 @default.
- W2023307428 countsByYear W20233074282013 @default.
- W2023307428 countsByYear W20233074282014 @default.
- W2023307428 countsByYear W20233074282015 @default.
- W2023307428 countsByYear W20233074282016 @default.
- W2023307428 countsByYear W20233074282018 @default.
- W2023307428 countsByYear W20233074282020 @default.
- W2023307428 countsByYear W20233074282021 @default.
- W2023307428 countsByYear W20233074282022 @default.
- W2023307428 countsByYear W20233074282023 @default.
- W2023307428 crossrefType "journal-article" @default.
- W2023307428 hasAuthorship W2023307428A5031058770 @default.
- W2023307428 hasAuthorship W2023307428A5076172610 @default.
- W2023307428 hasAuthorship W2023307428A5083889984 @default.
- W2023307428 hasConcept C121099081 @default.
- W2023307428 hasConcept C140793950 @default.
- W2023307428 hasConcept C173758957 @default.
- W2023307428 hasConcept C182049041 @default.
- W2023307428 hasConcept C18903297 @default.
- W2023307428 hasConcept C2776039942 @default.
- W2023307428 hasConcept C2777707652 @default.
- W2023307428 hasConcept C2778022221 @default.
- W2023307428 hasConcept C2779244815 @default.
- W2023307428 hasConcept C2780039072 @default.
- W2023307428 hasConcept C2780864789 @default.
- W2023307428 hasConcept C33070731 @default.
- W2023307428 hasConcept C39432304 @default.
- W2023307428 hasConcept C42972112 @default.
- W2023307428 hasConcept C71924100 @default.
- W2023307428 hasConcept C86803240 @default.
- W2023307428 hasConcept C87717796 @default.
- W2023307428 hasConceptScore W2023307428C121099081 @default.