Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023309260> ?p ?o ?g. }
- W2023309260 endingPage "82" @default.
- W2023309260 startingPage "65" @default.
- W2023309260 abstract "• Elevated P CO 2 enhanced accumulation of Cu and Cd in the gills of mollusks. • The proteasome activities were affected by metals but robust to elevated P CO 2 . • Exposure to Cd and Cu had opposite effects on the proteasome activity. • Combined exposure to Cu and elevated P CO 2 negatively affected energy status. Increased anthropogenic emission of CO 2 changes the carbonate chemistry and decreases the pH of the ocean. This can affect the speciation and the bioavailability of metals in polluted habitats such as estuaries. However, the effects of acidification on metal accumulation and stress response in estuarine organisms including bivalves are poorly understood. We studied the interactive effects of CO 2 and two common metal pollutants, copper (Cu) and cadmium (Cd), on metal accumulation, intracellular ATP/ubiquitin-dependent protein degradation, stress response and energy metabolism in two common estuarine bivalves— Crassostrea virginica (eastern oyster) and Mercenaria mercenaria (hard shell clam). Bivalves were exposed for 4–5 weeks to clean seawater (control) and to either 50 μg L −1 Cu or 50 μg L −1 Cd at one of three partial pressures of CO 2 ( P CO 2 ∼395, ∼800 and ∼1500 μatm) representative of the present-day conditions and projections of the Intergovernmental Panel for Climate Change (IPCC) for the years 2100 and 2250, respectively. Clams accumulated lower metal burdens than oysters, and elevated P CO 2 enhanced the Cd and Cu accumulation in mantle tissues in both species. Higher Cd and Cu burdens were associated with elevated mRNA expression of metal binding proteins metallothionein and ferritin. In the absence of added metals, proteasome activities of clams and oysters were robust to elevated P CO 2 , but P CO 2 modulated the proteasome response to metals. Cd exposure stimulated the chymotrypsin-like activity of the oyster proteasome at all CO 2 levels. In contrast, trypsin- and caspase-like activities of the oyster proteasome were slightly inhibited by Cd exposure in normocapnia but this inhibition was reversed at elevated P CO 2 . Cu exposure inhibited the chymotrypsin-like activity of the oyster proteasome regardless of the exposure P CO 2 . The effects of metal exposure on the proteasome activity were less pronounced in clams, likely due to the lower metal accumulation. However, the general trends (i.e. an increase during Cd exposure, inhibition during exposure to Cu, and overall stimulatory effects of elevated P CO 2 ) were similar to those found in oysters. Levels of mRNA for ubiquitin and tumor suppressor p53 were suppressed by metal exposures in normocapnia in both species but this effect was alleviated or reversed at elevated P CO 2 . Cellular energy status of oysters was maintained at all metal and CO 2 exposures, while in clams the simultaneous exposure to Cu and moderate hypercapnia (∼800 μatm P CO 2 ) led to a decline in glycogen, ATP and ADP levels and an increase in AMP indicating energy deficiency. These data suggest that environmental CO 2 levels can modulate accumulation and physiological effects of metals in bivalves in a species-specific manner which can affect their fitness and survival during the global change in estuaries." @default.
- W2023309260 created "2016-06-24" @default.
- W2023309260 creator A5025064253 @default.
- W2023309260 creator A5036885413 @default.
- W2023309260 creator A5082234540 @default.
- W2023309260 creator A5083489229 @default.
- W2023309260 creator A5090924576 @default.
- W2023309260 date "2014-04-01" @default.
- W2023309260 modified "2023-10-02" @default.
- W2023309260 title "Interactive effects of CO2 and trace metals on the proteasome activity and cellular stress response of marine bivalves Crassostrea virginica and Mercenaria mercenaria" @default.
- W2023309260 cites W1576815048 @default.
- W2023309260 cites W1966521314 @default.
- W2023309260 cites W1969894269 @default.
- W2023309260 cites W1974891881 @default.
- W2023309260 cites W1975856193 @default.
- W2023309260 cites W1978752749 @default.
- W2023309260 cites W1986009603 @default.
- W2023309260 cites W1986895851 @default.
- W2023309260 cites W1991930087 @default.
- W2023309260 cites W1993391209 @default.
- W2023309260 cites W1993504832 @default.
- W2023309260 cites W1997369314 @default.
- W2023309260 cites W1999293059 @default.
- W2023309260 cites W2008155208 @default.
- W2023309260 cites W2009135115 @default.
- W2023309260 cites W2010685333 @default.
- W2023309260 cites W2011745097 @default.
- W2023309260 cites W2012902444 @default.
- W2023309260 cites W2020550910 @default.
- W2023309260 cites W2021341899 @default.
- W2023309260 cites W2021416109 @default.
- W2023309260 cites W2022938402 @default.
- W2023309260 cites W2026200 @default.
- W2023309260 cites W2026345779 @default.
- W2023309260 cites W2028819755 @default.
- W2023309260 cites W2032209278 @default.
- W2023309260 cites W2038511029 @default.
- W2023309260 cites W2039647697 @default.
- W2023309260 cites W2040152564 @default.
- W2023309260 cites W2040394032 @default.
- W2023309260 cites W2040698692 @default.
- W2023309260 cites W2042901892 @default.
- W2023309260 cites W2043185169 @default.
- W2023309260 cites W2047943139 @default.
- W2023309260 cites W2052004580 @default.
- W2023309260 cites W2052839099 @default.
- W2023309260 cites W2055277746 @default.
- W2023309260 cites W2059534822 @default.
- W2023309260 cites W2063931700 @default.
- W2023309260 cites W2064796407 @default.
- W2023309260 cites W2066857529 @default.
- W2023309260 cites W2066875565 @default.
- W2023309260 cites W2072173322 @default.
- W2023309260 cites W2080664308 @default.
- W2023309260 cites W2085760247 @default.
- W2023309260 cites W2091202236 @default.
- W2023309260 cites W2091823485 @default.
- W2023309260 cites W2096644677 @default.
- W2023309260 cites W2101869495 @default.
- W2023309260 cites W2108244474 @default.
- W2023309260 cites W2115922364 @default.
- W2023309260 cites W2123781000 @default.
- W2023309260 cites W2124844321 @default.
- W2023309260 cites W2125660849 @default.
- W2023309260 cites W2125756459 @default.
- W2023309260 cites W2126511801 @default.
- W2023309260 cites W2130578206 @default.
- W2023309260 cites W2131453598 @default.
- W2023309260 cites W2140665078 @default.
- W2023309260 cites W2142263421 @default.
- W2023309260 cites W2152620363 @default.
- W2023309260 cites W2153332464 @default.
- W2023309260 cites W2155265519 @default.
- W2023309260 cites W2156734750 @default.
- W2023309260 cites W2157216667 @default.
- W2023309260 cites W2158950430 @default.
- W2023309260 cites W2160349589 @default.
- W2023309260 cites W2168405960 @default.
- W2023309260 cites W2170557127 @default.
- W2023309260 cites W2173001546 @default.
- W2023309260 cites W2174245179 @default.
- W2023309260 cites W2178940152 @default.
- W2023309260 cites W23150650 @default.
- W2023309260 cites W2317598445 @default.
- W2023309260 cites W4300515300 @default.
- W2023309260 cites W83831086 @default.
- W2023309260 doi "https://doi.org/10.1016/j.aquatox.2014.01.027" @default.
- W2023309260 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24572072" @default.
- W2023309260 hasPublicationYear "2014" @default.
- W2023309260 type Work @default.
- W2023309260 sameAs 2023309260 @default.
- W2023309260 citedByCount "80" @default.
- W2023309260 countsByYear W20233092602014 @default.
- W2023309260 countsByYear W20233092602015 @default.
- W2023309260 countsByYear W20233092602016 @default.
- W2023309260 countsByYear W20233092602017 @default.
- W2023309260 countsByYear W20233092602018 @default.
- W2023309260 countsByYear W20233092602019 @default.