Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023309411> ?p ?o ?g. }
- W2023309411 endingPage "523" @default.
- W2023309411 startingPage "511" @default.
- W2023309411 abstract "An industrial production-scale process currently conducted at Clariant site/Frankfurt, termed Phenyl Boronic Acid Process from here on, was investigated at laboratory-scale using two micromixer/tubular reactor configurations, being equipped with either a glass interdigital (for details see (1) Ehrfeld, W.; Golbig, K.; Hessel, V.; Löwe, H.; Richter, T. Characterization of mixing in micromixers by a test reaction: single mixing units and mixer arrays. Ind. Eng. Chem. Res. 1999, 38, (3), 1075−1082; (2) Hessel, V.; Hardt, S.; Löwe, H.; Schönfeld, F. Laminar mixing in different interdigital micromixers - Part I: Experimental characterization. AIChE J. 2003, 49, 566−577; (3) Hardt, S.; Schönfeld, F. Laminar Mixing in Different Interdigital Micromixers - Part 2: Numerical Simulations. AIChE J. 2003, 49, 578−584; (4) Herweck, T.; Hardt, S.; Hessel, V.; Löwe, H.; Hofmann, C.; Weise, F.; Dietrich, T.; Freitag, A. Visualization of Flow Patterns and Chemical Synthesis in Transparent Micromixers. In Topical Conference Proceedings; IMRET 5, 5th International Conference on Microreaction Technology, AIChE Spring National Meeting; Matlosz, M., Ehrfeld, W., Baselt, J. P., Eds.; Springer-Verlag: Berlin, 2001; pp 215−229) or a steel split-recombine mixer (for details see Schönfeld, F.; Hessel, V.; Hofmann, C. An Optimised Split-and-Recombine Micro Mixer with Uniform ‘Chaotic' Mixing. Lab Chip 2004, 4, 65−69). The best yield of the microreactor investigations was 89%, exceeding the performance of the industrially employed stirred-tank process by nearly 25%. Moreover, the total amount of side and consecutive products was decreased from 10−15% to 5−10%. In addition to these yield improvements, the energy expenditure of the microreactor processing was also notably reduced, first of all because of carrying out the reaction at favorable ambient temperature. In contrast, the former batch process had to be carried out at cryogenic temperatures of −35 °C. Even at temperatures as high as 50 °C, a high selectivity was maintained when using the microreactor. As a further cause for energy savings, the higher purity of the product eliminated the need for distillation; in total therefore, only one heating−cooling cycle with reduced temperature difference was required for the microreactor process in contrast to the three cycles with large temperature differences used in conventional processing. Facing production and process liability issues, a specially made pilot-scale configuration was constructed entirely out of stainless steel components, among them a split−recombine caterpillar mixer having larger internal fluid channels than the interdigital glass mixer. The new configuration allowed one to perform scale-up studies at throughputs as high as 10 L/h." @default.
- W2023309411 created "2016-06-24" @default.
- W2023309411 creator A5003448404 @default.
- W2023309411 creator A5014863727 @default.
- W2023309411 creator A5043826359 @default.
- W2023309411 creator A5050457722 @default.
- W2023309411 creator A5063727356 @default.
- W2023309411 creator A5079277333 @default.
- W2023309411 creator A5080030626 @default.
- W2023309411 date "2004-03-04" @default.
- W2023309411 modified "2023-10-01" @default.
- W2023309411 title "Selectivity Gains and Energy Savings for the Industrial Phenyl Boronic Acid Process Using Micromixer/Tubular Reactors" @default.
- W2023309411 cites W1540772153 @default.
- W2023309411 cites W1971437725 @default.
- W2023309411 cites W1980501647 @default.
- W2023309411 cites W1982555701 @default.
- W2023309411 cites W1985319422 @default.
- W2023309411 cites W2024159652 @default.
- W2023309411 cites W2025994355 @default.
- W2023309411 cites W2086492368 @default.
- W2023309411 cites W2106087621 @default.
- W2023309411 cites W2139859178 @default.
- W2023309411 cites W2186692014 @default.
- W2023309411 cites W4242730587 @default.
- W2023309411 doi "https://doi.org/10.1021/op0341768" @default.
- W2023309411 hasPublicationYear "2004" @default.
- W2023309411 type Work @default.
- W2023309411 sameAs 2023309411 @default.
- W2023309411 citedByCount "85" @default.
- W2023309411 countsByYear W20233094112012 @default.
- W2023309411 countsByYear W20233094112013 @default.
- W2023309411 countsByYear W20233094112014 @default.
- W2023309411 countsByYear W20233094112015 @default.
- W2023309411 countsByYear W20233094112016 @default.
- W2023309411 countsByYear W20233094112017 @default.
- W2023309411 countsByYear W20233094112018 @default.
- W2023309411 countsByYear W20233094112019 @default.
- W2023309411 countsByYear W20233094112020 @default.
- W2023309411 countsByYear W20233094112021 @default.
- W2023309411 countsByYear W20233094112022 @default.
- W2023309411 countsByYear W20233094112023 @default.
- W2023309411 crossrefType "journal-article" @default.
- W2023309411 hasAuthorship W2023309411A5003448404 @default.
- W2023309411 hasAuthorship W2023309411A5014863727 @default.
- W2023309411 hasAuthorship W2023309411A5043826359 @default.
- W2023309411 hasAuthorship W2023309411A5050457722 @default.
- W2023309411 hasAuthorship W2023309411A5063727356 @default.
- W2023309411 hasAuthorship W2023309411A5079277333 @default.
- W2023309411 hasAuthorship W2023309411A5080030626 @default.
- W2023309411 hasConcept C121332964 @default.
- W2023309411 hasConcept C127413603 @default.
- W2023309411 hasConcept C134121241 @default.
- W2023309411 hasConcept C138777275 @default.
- W2023309411 hasConcept C147831808 @default.
- W2023309411 hasConcept C159985019 @default.
- W2023309411 hasConcept C161790260 @default.
- W2023309411 hasConcept C171250308 @default.
- W2023309411 hasConcept C178790620 @default.
- W2023309411 hasConcept C185592680 @default.
- W2023309411 hasConcept C192562407 @default.
- W2023309411 hasConcept C2780934452 @default.
- W2023309411 hasConcept C2780982322 @default.
- W2023309411 hasConcept C42360764 @default.
- W2023309411 hasConcept C62520636 @default.
- W2023309411 hasConcept C76563973 @default.
- W2023309411 hasConcept C8673954 @default.
- W2023309411 hasConcept C97355855 @default.
- W2023309411 hasConceptScore W2023309411C121332964 @default.
- W2023309411 hasConceptScore W2023309411C127413603 @default.
- W2023309411 hasConceptScore W2023309411C134121241 @default.
- W2023309411 hasConceptScore W2023309411C138777275 @default.
- W2023309411 hasConceptScore W2023309411C147831808 @default.
- W2023309411 hasConceptScore W2023309411C159985019 @default.
- W2023309411 hasConceptScore W2023309411C161790260 @default.
- W2023309411 hasConceptScore W2023309411C171250308 @default.
- W2023309411 hasConceptScore W2023309411C178790620 @default.
- W2023309411 hasConceptScore W2023309411C185592680 @default.
- W2023309411 hasConceptScore W2023309411C192562407 @default.
- W2023309411 hasConceptScore W2023309411C2780934452 @default.
- W2023309411 hasConceptScore W2023309411C2780982322 @default.
- W2023309411 hasConceptScore W2023309411C42360764 @default.
- W2023309411 hasConceptScore W2023309411C62520636 @default.
- W2023309411 hasConceptScore W2023309411C76563973 @default.
- W2023309411 hasConceptScore W2023309411C8673954 @default.
- W2023309411 hasConceptScore W2023309411C97355855 @default.
- W2023309411 hasIssue "3" @default.
- W2023309411 hasLocation W20233094111 @default.
- W2023309411 hasOpenAccess W2023309411 @default.
- W2023309411 hasPrimaryLocation W20233094111 @default.
- W2023309411 hasRelatedWork W1985152289 @default.
- W2023309411 hasRelatedWork W1987010381 @default.
- W2023309411 hasRelatedWork W2061028381 @default.
- W2023309411 hasRelatedWork W2223543557 @default.
- W2023309411 hasRelatedWork W2337722893 @default.
- W2023309411 hasRelatedWork W2588402499 @default.
- W2023309411 hasRelatedWork W2899251263 @default.
- W2023309411 hasRelatedWork W3212270575 @default.
- W2023309411 hasRelatedWork W4248431170 @default.