Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023348448> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2023348448 endingPage "3906" @default.
- W2023348448 startingPage "3905" @default.
- W2023348448 abstract "A cell’s genome is under constant threat of damage, which if not repaired can lead to mutations or cell death. Common forms of DNA damage found in nature include cyclobutane pyrimidine dimers and 6-4 photoproducts induced by UV-irradiation. These and other helix-distorting lesions are removed by a highly conserved process called nucleotide excision repair (NER) that is found in every kingdom of life (1). NER is initiated in two general ways: by damage recognition proteins that survey the entire genome for damage or lesion-induced transcriptional stalling. This latter pathway, called transcription-coupled repair (TCR), first reported in mammalian cells and then in bacteria, is initiated when RNA polymerase (RNAP) is arrested at a DNA lesion embedded in the transcribed strand (2, 3). However, before DNA repair enzymes obtain access, the stalled RNAP must be pushed away from the lesion by the action of DNA translocases. Thus, the repair “coupling factors,” which recognize the stalled RNAP, must work to both displace the polymerase and simultaneously enlist the repair proteins to remove the damage. In bacteria, two different TCR pathways have emerged involving two different DNA helicases, which help to displace RNAP. The Mfd (mutation frequency decline) protein, also called transcription-repair coupling factor, uses its helicase fold and ATP hydrolysis to literally push RNAP forward (downstream) past the damaged site (Fig. 1A) (reviewed in ref. 4), whereas in a newly discovered alternative pathway UvrD (helicase II) tows the RNAP backward (upstream) with the help of the transcription elongation factor, NusA (5). This second approach more closely resembles what is thought to occur in mammalian cells during TCR (6). As described below, Mfd targets the nucleotide excision repair system to sites of damage through its direct interaction with a stalled RNAP. However, nature has gone even further in devising ways to find and remove potentially RNAP-blocking DNA damage. As described by Haines et al. (7) in PNAS, Nigel Savery’s group at the University of Bristol have found that the Mfd protein that normally accompanies the translocating RNAP can be sent ahead of a blocked RNAP to scout for damage in the transcribed strand and facilitate the recruitment of the bacterial NER machinery." @default.
- W2023348448 created "2016-06-24" @default.
- W2023348448 creator A5029478690 @default.
- W2023348448 creator A5055919829 @default.
- W2023348448 date "2014-03-05" @default.
- W2023348448 modified "2023-10-03" @default.
- W2023348448 title "Transcriptional pausing to scout ahead for DNA damage" @default.
- W2023348448 cites W196605569 @default.
- W2023348448 cites W1971200883 @default.
- W2023348448 cites W1982934377 @default.
- W2023348448 cites W2016430241 @default.
- W2023348448 cites W2024939172 @default.
- W2023348448 cites W2039965075 @default.
- W2023348448 cites W2046082575 @default.
- W2023348448 cites W2059901912 @default.
- W2023348448 cites W2078446890 @default.
- W2023348448 cites W2157560413 @default.
- W2023348448 cites W2319757645 @default.
- W2023348448 doi "https://doi.org/10.1073/pnas.1402020111" @default.
- W2023348448 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3964122" @default.
- W2023348448 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24599593" @default.
- W2023348448 hasPublicationYear "2014" @default.
- W2023348448 type Work @default.
- W2023348448 sameAs 2023348448 @default.
- W2023348448 citedByCount "3" @default.
- W2023348448 countsByYear W20233484482016 @default.
- W2023348448 countsByYear W20233484482018 @default.
- W2023348448 countsByYear W20233484482023 @default.
- W2023348448 crossrefType "journal-article" @default.
- W2023348448 hasAuthorship W2023348448A5029478690 @default.
- W2023348448 hasAuthorship W2023348448A5055919829 @default.
- W2023348448 hasBestOaLocation W20233484481 @default.
- W2023348448 hasConcept C143425029 @default.
- W2023348448 hasConcept C54355233 @default.
- W2023348448 hasConcept C552990157 @default.
- W2023348448 hasConcept C70721500 @default.
- W2023348448 hasConcept C86803240 @default.
- W2023348448 hasConcept C95444343 @default.
- W2023348448 hasConceptScore W2023348448C143425029 @default.
- W2023348448 hasConceptScore W2023348448C54355233 @default.
- W2023348448 hasConceptScore W2023348448C552990157 @default.
- W2023348448 hasConceptScore W2023348448C70721500 @default.
- W2023348448 hasConceptScore W2023348448C86803240 @default.
- W2023348448 hasConceptScore W2023348448C95444343 @default.
- W2023348448 hasIssue "11" @default.
- W2023348448 hasLocation W20233484481 @default.
- W2023348448 hasLocation W20233484482 @default.
- W2023348448 hasLocation W20233484483 @default.
- W2023348448 hasLocation W20233484484 @default.
- W2023348448 hasOpenAccess W2023348448 @default.
- W2023348448 hasPrimaryLocation W20233484481 @default.
- W2023348448 hasRelatedWork W1920751942 @default.
- W2023348448 hasRelatedWork W1991523530 @default.
- W2023348448 hasRelatedWork W2002128513 @default.
- W2023348448 hasRelatedWork W2020824267 @default.
- W2023348448 hasRelatedWork W2028633235 @default.
- W2023348448 hasRelatedWork W2031436818 @default.
- W2023348448 hasRelatedWork W2057739827 @default.
- W2023348448 hasRelatedWork W2075354549 @default.
- W2023348448 hasRelatedWork W2769377618 @default.
- W2023348448 hasRelatedWork W2092874662 @default.
- W2023348448 hasVolume "111" @default.
- W2023348448 isParatext "false" @default.
- W2023348448 isRetracted "false" @default.
- W2023348448 magId "2023348448" @default.
- W2023348448 workType "article" @default.