Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023348462> ?p ?o ?g. }
- W2023348462 endingPage "2244" @default.
- W2023348462 startingPage "2229" @default.
- W2023348462 abstract "A recently proposed method of optogalvanic double-resonance (OGDR) spectroscopy, which employs two cw lasers modulated at different frequencies and a dc discharge, has been investigated theoretically as well as experimentally. The technique is demonstrated to provide a versatile, state-selective spectroscopic method. A detailed analysis has been carried out for different situations where two lasers pump transitions which have the lower and/or upper state, or no state, in common. It also shows that the OGDR signal detected at the sum or difference modulation frequency can be given as a linear combination of the perturbed population densities in a plasma which give rise to the single-resonance signal. In addition, the results show that the OGDR signal polarity is characteristic for each type of double resonance. This has been verified in an OGDR experiment using a hollow-cathode discharge in neon and two cw dye lasers. State-selective OGDR spectra have been compared with optical-optical double-resonance spectra. Useful applications and advantages of the OGDR spectroscopy are discussed." @default.
- W2023348462 created "2016-06-24" @default.
- W2023348462 creator A5023892598 @default.
- W2023348462 creator A5048675092 @default.
- W2023348462 creator A5066948605 @default.
- W2023348462 date "1983-10-01" @default.
- W2023348462 modified "2023-10-16" @default.
- W2023348462 title "Optogalvanic double-resonance spectroscopy in a neon discharge" @default.
- W2023348462 cites W1968932323 @default.
- W2023348462 cites W1984232124 @default.
- W2023348462 cites W1985757731 @default.
- W2023348462 cites W1986110899 @default.
- W2023348462 cites W2001426719 @default.
- W2023348462 cites W2001792344 @default.
- W2023348462 cites W2007228444 @default.
- W2023348462 cites W2011640410 @default.
- W2023348462 cites W2016800658 @default.
- W2023348462 cites W2019307836 @default.
- W2023348462 cites W2021534775 @default.
- W2023348462 cites W2022710214 @default.
- W2023348462 cites W2023248240 @default.
- W2023348462 cites W2025974534 @default.
- W2023348462 cites W2029345619 @default.
- W2023348462 cites W2031575508 @default.
- W2023348462 cites W2033785055 @default.
- W2023348462 cites W2035518611 @default.
- W2023348462 cites W2036837017 @default.
- W2023348462 cites W2040815194 @default.
- W2023348462 cites W2041448582 @default.
- W2023348462 cites W2044308541 @default.
- W2023348462 cites W2048457908 @default.
- W2023348462 cites W2048920759 @default.
- W2023348462 cites W2055854760 @default.
- W2023348462 cites W2056610226 @default.
- W2023348462 cites W2058395968 @default.
- W2023348462 cites W2062310790 @default.
- W2023348462 cites W2063785384 @default.
- W2023348462 cites W2066147275 @default.
- W2023348462 cites W2067849721 @default.
- W2023348462 cites W2072688129 @default.
- W2023348462 cites W2073390686 @default.
- W2023348462 cites W2082768727 @default.
- W2023348462 cites W2084650875 @default.
- W2023348462 cites W2087891274 @default.
- W2023348462 cites W2090168312 @default.
- W2023348462 cites W2147715573 @default.
- W2023348462 cites W2163999124 @default.
- W2023348462 cites W2171184709 @default.
- W2023348462 cites W2482675007 @default.
- W2023348462 cites W4249357170 @default.
- W2023348462 cites W576661069 @default.
- W2023348462 doi "https://doi.org/10.1103/physreva.28.2229" @default.
- W2023348462 hasPublicationYear "1983" @default.
- W2023348462 type Work @default.
- W2023348462 sameAs 2023348462 @default.
- W2023348462 citedByCount "11" @default.
- W2023348462 countsByYear W20233484622012 @default.
- W2023348462 crossrefType "journal-article" @default.
- W2023348462 hasAuthorship W2023348462A5023892598 @default.
- W2023348462 hasAuthorship W2023348462A5048675092 @default.
- W2023348462 hasAuthorship W2023348462A5066948605 @default.
- W2023348462 hasConcept C120665830 @default.
- W2023348462 hasConcept C121332964 @default.
- W2023348462 hasConcept C1276947 @default.
- W2023348462 hasConcept C139210041 @default.
- W2023348462 hasConcept C144024400 @default.
- W2023348462 hasConcept C149923435 @default.
- W2023348462 hasConcept C165096258 @default.
- W2023348462 hasConcept C184779094 @default.
- W2023348462 hasConcept C192562407 @default.
- W2023348462 hasConcept C199360897 @default.
- W2023348462 hasConcept C2779843651 @default.
- W2023348462 hasConcept C2908647359 @default.
- W2023348462 hasConcept C32891209 @default.
- W2023348462 hasConcept C33619061 @default.
- W2023348462 hasConcept C41008148 @default.
- W2023348462 hasConcept C46141821 @default.
- W2023348462 hasConcept C4839761 @default.
- W2023348462 hasConcept C520434653 @default.
- W2023348462 hasConcept C522602180 @default.
- W2023348462 hasConcept C547737533 @default.
- W2023348462 hasConcept C62520636 @default.
- W2023348462 hasConcept C82706917 @default.
- W2023348462 hasConceptScore W2023348462C120665830 @default.
- W2023348462 hasConceptScore W2023348462C121332964 @default.
- W2023348462 hasConceptScore W2023348462C1276947 @default.
- W2023348462 hasConceptScore W2023348462C139210041 @default.
- W2023348462 hasConceptScore W2023348462C144024400 @default.
- W2023348462 hasConceptScore W2023348462C149923435 @default.
- W2023348462 hasConceptScore W2023348462C165096258 @default.
- W2023348462 hasConceptScore W2023348462C184779094 @default.
- W2023348462 hasConceptScore W2023348462C192562407 @default.
- W2023348462 hasConceptScore W2023348462C199360897 @default.
- W2023348462 hasConceptScore W2023348462C2779843651 @default.
- W2023348462 hasConceptScore W2023348462C2908647359 @default.
- W2023348462 hasConceptScore W2023348462C32891209 @default.
- W2023348462 hasConceptScore W2023348462C33619061 @default.
- W2023348462 hasConceptScore W2023348462C41008148 @default.