Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023348596> ?p ?o ?g. }
- W2023348596 endingPage "239" @default.
- W2023348596 startingPage "229" @default.
- W2023348596 abstract "Reverse engineering methods are typically first tested on simulated data from in silico networks, for systematic and efficient performance assessment, before an application to real biological networks. In this paper, we present a method for generating biologically plausible in silico networks, which allow realistic performance assessment of network inference algorithms. Instead of using random graph models, which are known to only partly capture the structural properties of biological networks, we generate network structures by extracting modules from known biological interaction networks. Using the yeast transcriptional regulatory network as a test case, we show that extracted modules have a biologically plausible connectivity because they preserve functional and structural properties of the original network. Our method was selected to generate the “gold standard” networks for the gene network reverse engineering challenge of the third DREAM conference (Dialogue on Reverse Engineering Assessment and Methods 2008, Cambridge, MA)." @default.
- W2023348596 created "2016-06-24" @default.
- W2023348596 creator A5012654082 @default.
- W2023348596 creator A5017730937 @default.
- W2023348596 creator A5033110682 @default.
- W2023348596 creator A5059369445 @default.
- W2023348596 date "2009-02-01" @default.
- W2023348596 modified "2023-10-11" @default.
- W2023348596 title "Generating Realistic <i>In Silico</i> Gene Networks for Performance Assessment of Reverse Engineering Methods" @default.
- W2023348596 cites W1623155147 @default.
- W2023348596 cites W1644749979 @default.
- W2023348596 cites W1797459856 @default.
- W2023348596 cites W1851422093 @default.
- W2023348596 cites W1877206895 @default.
- W2023348596 cites W1965648656 @default.
- W2023348596 cites W1972764318 @default.
- W2023348596 cites W1973260612 @default.
- W2023348596 cites W1995907191 @default.
- W2023348596 cites W2015953751 @default.
- W2023348596 cites W2018045523 @default.
- W2023348596 cites W2024060441 @default.
- W2023348596 cites W2038153693 @default.
- W2023348596 cites W2061425021 @default.
- W2023348596 cites W2076372398 @default.
- W2023348596 cites W2090529419 @default.
- W2023348596 cites W2100850281 @default.
- W2023348596 cites W2110699703 @default.
- W2023348596 cites W2111011458 @default.
- W2023348596 cites W2120423098 @default.
- W2023348596 cites W2121150592 @default.
- W2023348596 cites W2125631472 @default.
- W2023348596 cites W2128506325 @default.
- W2023348596 cites W2137474062 @default.
- W2023348596 cites W2139439234 @default.
- W2023348596 cites W2141734233 @default.
- W2023348596 cites W2142107342 @default.
- W2023348596 cites W2152336513 @default.
- W2023348596 cites W2154293840 @default.
- W2023348596 cites W2156154713 @default.
- W2023348596 cites W2157121418 @default.
- W2023348596 cites W2161409973 @default.
- W2023348596 cites W2166574880 @default.
- W2023348596 doi "https://doi.org/10.1089/cmb.2008.09tt" @default.
- W2023348596 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19183003" @default.
- W2023348596 hasPublicationYear "2009" @default.
- W2023348596 type Work @default.
- W2023348596 sameAs 2023348596 @default.
- W2023348596 citedByCount "396" @default.
- W2023348596 countsByYear W20233485962012 @default.
- W2023348596 countsByYear W20233485962013 @default.
- W2023348596 countsByYear W20233485962014 @default.
- W2023348596 countsByYear W20233485962015 @default.
- W2023348596 countsByYear W20233485962016 @default.
- W2023348596 countsByYear W20233485962017 @default.
- W2023348596 countsByYear W20233485962018 @default.
- W2023348596 countsByYear W20233485962019 @default.
- W2023348596 countsByYear W20233485962020 @default.
- W2023348596 countsByYear W20233485962021 @default.
- W2023348596 countsByYear W20233485962022 @default.
- W2023348596 countsByYear W20233485962023 @default.
- W2023348596 crossrefType "journal-article" @default.
- W2023348596 hasAuthorship W2023348596A5012654082 @default.
- W2023348596 hasAuthorship W2023348596A5017730937 @default.
- W2023348596 hasAuthorship W2023348596A5033110682 @default.
- W2023348596 hasAuthorship W2023348596A5059369445 @default.
- W2023348596 hasBestOaLocation W20233485962 @default.
- W2023348596 hasConcept C104317684 @default.
- W2023348596 hasConcept C119857082 @default.
- W2023348596 hasConcept C124101348 @default.
- W2023348596 hasConcept C150194340 @default.
- W2023348596 hasConcept C154945302 @default.
- W2023348596 hasConcept C199360897 @default.
- W2023348596 hasConcept C207850805 @default.
- W2023348596 hasConcept C2775905019 @default.
- W2023348596 hasConcept C2776214188 @default.
- W2023348596 hasConcept C28225019 @default.
- W2023348596 hasConcept C41008148 @default.
- W2023348596 hasConcept C55493867 @default.
- W2023348596 hasConcept C67339327 @default.
- W2023348596 hasConcept C70721500 @default.
- W2023348596 hasConcept C80444323 @default.
- W2023348596 hasConcept C86803240 @default.
- W2023348596 hasConceptScore W2023348596C104317684 @default.
- W2023348596 hasConceptScore W2023348596C119857082 @default.
- W2023348596 hasConceptScore W2023348596C124101348 @default.
- W2023348596 hasConceptScore W2023348596C150194340 @default.
- W2023348596 hasConceptScore W2023348596C154945302 @default.
- W2023348596 hasConceptScore W2023348596C199360897 @default.
- W2023348596 hasConceptScore W2023348596C207850805 @default.
- W2023348596 hasConceptScore W2023348596C2775905019 @default.
- W2023348596 hasConceptScore W2023348596C2776214188 @default.
- W2023348596 hasConceptScore W2023348596C28225019 @default.
- W2023348596 hasConceptScore W2023348596C41008148 @default.
- W2023348596 hasConceptScore W2023348596C55493867 @default.
- W2023348596 hasConceptScore W2023348596C67339327 @default.
- W2023348596 hasConceptScore W2023348596C70721500 @default.
- W2023348596 hasConceptScore W2023348596C80444323 @default.
- W2023348596 hasConceptScore W2023348596C86803240 @default.