Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023360712> ?p ?o ?g. }
- W2023360712 endingPage "669" @default.
- W2023360712 startingPage "659" @default.
- W2023360712 abstract "In this paper, airborne hyperspectral data have been exploited by means of Nonlinear Principal Component Analysis (NLPCA) to test their effectiveness as a tool for archaeological prospection, evaluating their potential for detecting anomalies related to buried archaeological structures. In the literature, the NLPCA was used to decorrelate the information related to a hyperspectral image. The resulting nonlinear principal components (NLPCs) contain information related to different land cover types and biophysical properties, such as vegetation coverage or soil wetness. From this point of view, NLPCA applied to airborne hyperspectral data was exploited to test their effectiveness and capability in highlighting the anomalies related to buried archaeological structures. Each component obtained from the NLPCA has been interpreted in order to assess any tonal anomalies. As a matter of a fact, since every analyzed component exhibited anomalies different in terms of size and intensity, the Separability Index (SI) was applied for measuring the tonal difference of the anomalies with respect to the surrounding area. SI has been evaluated for determining the potential of anomalies detection in each component. The airborne Multispectral Infrared and Visible Imaging Spectrometer (MIVIS) images, collected over the archaeological Park of Selinunte, were analyzed for this purpose. In this area, the presence of remains, not yet excavated, was reported by archaeologists. A previous analysis of this image, carried out to highlight the buried structures, appear to match the archaeological prospection. The results obtained by the present work demonstrate that the use of the NLPCA technique, compared to previous approaches emphasizes the ability of airborne hyperspectral images to identify buried structures. In particular, the adopted data processing flow chart (i.e., NLPCA and SI techniques, data resampling criteria and anomaly evaluations criteria) applied to MIVIS airborne hyperspectral data, collected over Selinunte Archaeological Park, highlighted the ability of the NLPCA technique in emphasizing the anomalies related to the presence of buried structure." @default.
- W2023360712 created "2016-06-24" @default.
- W2023360712 creator A5035508615 @default.
- W2023360712 creator A5062915843 @default.
- W2023360712 creator A5078994593 @default.
- W2023360712 date "2013-04-01" @default.
- W2023360712 modified "2023-10-07" @default.
- W2023360712 title "Detection of Anomalies Produced by Buried Archaeological Structures Using Nonlinear Principal Component Analysis Applied to Airborne Hyperspectral Image" @default.
- W2023360712 cites W1981817354 @default.
- W2023360712 cites W1996027975 @default.
- W2023360712 cites W1996355918 @default.
- W2023360712 cites W1996922388 @default.
- W2023360712 cites W2004104348 @default.
- W2023360712 cites W2010319424 @default.
- W2023360712 cites W2010797000 @default.
- W2023360712 cites W201224041 @default.
- W2023360712 cites W2018297962 @default.
- W2023360712 cites W2018601649 @default.
- W2023360712 cites W2043441451 @default.
- W2023360712 cites W2045381284 @default.
- W2023360712 cites W2051812123 @default.
- W2023360712 cites W2060100276 @default.
- W2023360712 cites W2060542593 @default.
- W2023360712 cites W2083197550 @default.
- W2023360712 cites W2086349579 @default.
- W2023360712 cites W2086871164 @default.
- W2023360712 cites W2098526008 @default.
- W2023360712 cites W2102739936 @default.
- W2023360712 cites W2106670318 @default.
- W2023360712 cites W2106777458 @default.
- W2023360712 cites W2108995755 @default.
- W2023360712 cites W2115366158 @default.
- W2023360712 cites W2119904473 @default.
- W2023360712 cites W2122538988 @default.
- W2023360712 cites W2123649031 @default.
- W2023360712 cites W2124194540 @default.
- W2023360712 cites W2128330514 @default.
- W2023360712 cites W2136625467 @default.
- W2023360712 cites W2141494774 @default.
- W2023360712 cites W2157235704 @default.
- W2023360712 cites W2165289391 @default.
- W2023360712 cites W2166576238 @default.
- W2023360712 cites W4214564766 @default.
- W2023360712 cites W4234789402 @default.
- W2023360712 doi "https://doi.org/10.1109/jstars.2012.2227301" @default.
- W2023360712 hasPublicationYear "2013" @default.
- W2023360712 type Work @default.
- W2023360712 sameAs 2023360712 @default.
- W2023360712 citedByCount "35" @default.
- W2023360712 countsByYear W20233607122013 @default.
- W2023360712 countsByYear W20233607122014 @default.
- W2023360712 countsByYear W20233607122015 @default.
- W2023360712 countsByYear W20233607122016 @default.
- W2023360712 countsByYear W20233607122017 @default.
- W2023360712 countsByYear W20233607122018 @default.
- W2023360712 countsByYear W20233607122019 @default.
- W2023360712 countsByYear W20233607122020 @default.
- W2023360712 countsByYear W20233607122021 @default.
- W2023360712 countsByYear W20233607122022 @default.
- W2023360712 crossrefType "journal-article" @default.
- W2023360712 hasAuthorship W2023360712A5035508615 @default.
- W2023360712 hasAuthorship W2023360712A5062915843 @default.
- W2023360712 hasAuthorship W2023360712A5078994593 @default.
- W2023360712 hasBestOaLocation W20233607122 @default.
- W2023360712 hasConcept C127313418 @default.
- W2023360712 hasConcept C142724271 @default.
- W2023360712 hasConcept C154945302 @default.
- W2023360712 hasConcept C159078339 @default.
- W2023360712 hasConcept C166957645 @default.
- W2023360712 hasConcept C173163844 @default.
- W2023360712 hasConcept C205649164 @default.
- W2023360712 hasConcept C27438332 @default.
- W2023360712 hasConcept C2776133958 @default.
- W2023360712 hasConcept C41008148 @default.
- W2023360712 hasConcept C62649853 @default.
- W2023360712 hasConcept C71924100 @default.
- W2023360712 hasConceptScore W2023360712C127313418 @default.
- W2023360712 hasConceptScore W2023360712C142724271 @default.
- W2023360712 hasConceptScore W2023360712C154945302 @default.
- W2023360712 hasConceptScore W2023360712C159078339 @default.
- W2023360712 hasConceptScore W2023360712C166957645 @default.
- W2023360712 hasConceptScore W2023360712C173163844 @default.
- W2023360712 hasConceptScore W2023360712C205649164 @default.
- W2023360712 hasConceptScore W2023360712C27438332 @default.
- W2023360712 hasConceptScore W2023360712C2776133958 @default.
- W2023360712 hasConceptScore W2023360712C41008148 @default.
- W2023360712 hasConceptScore W2023360712C62649853 @default.
- W2023360712 hasConceptScore W2023360712C71924100 @default.
- W2023360712 hasIssue "2" @default.
- W2023360712 hasLocation W20233607121 @default.
- W2023360712 hasLocation W20233607122 @default.
- W2023360712 hasLocation W20233607123 @default.
- W2023360712 hasLocation W20233607124 @default.
- W2023360712 hasLocation W20233607125 @default.
- W2023360712 hasLocation W20233607126 @default.
- W2023360712 hasOpenAccess W2023360712 @default.
- W2023360712 hasPrimaryLocation W20233607121 @default.
- W2023360712 hasRelatedWork W2018850895 @default.