Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023363172> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2023363172 endingPage "618" @default.
- W2023363172 startingPage "612" @default.
- W2023363172 abstract "•The previous installments in this series reviewed several mechanisms for generating ultrasensitivity. •In this review, we examine how ultrasensitivity can contribute to the functioning of more complex systems. •Ultrasensitivity can allow cascades to transmit signals effectively. •Ultrasensitivity is important for the generation of bistability by positive feedback loops. •Ultrasensitivity promotes the generation of limit cycle oscillations by negative feedback loops. Switch-like, ultrasensitive responses – responses that resemble those of cooperative enzymes but are not necessarily generated by cooperativity – are widespread in signal transduction. In the previous installments in this series, we reviewed several mechanisms for generating ultrasensitivity: zero-order ultrasensitivity; multistep ultrasensitivity; inhibitor ultrasensitivity; and positive feedback (or double negative feedback) loops. In this review, we focus on how ultrasensitive components can be important for the functioning of more complex signaling circuits. Ultrasensitivity can allow the effective transmission of signals down a signaling cascade, can contribute to the generation of bistability by positive feedback, and can promote the production of biochemical oscillations in negative feedback loops. This makes ultrasensitivity a key building block in systems biology and synthetic biology. Switch-like, ultrasensitive responses – responses that resemble those of cooperative enzymes but are not necessarily generated by cooperativity – are widespread in signal transduction. In the previous installments in this series, we reviewed several mechanisms for generating ultrasensitivity: zero-order ultrasensitivity; multistep ultrasensitivity; inhibitor ultrasensitivity; and positive feedback (or double negative feedback) loops. In this review, we focus on how ultrasensitive components can be important for the functioning of more complex signaling circuits. Ultrasensitivity can allow the effective transmission of signals down a signaling cascade, can contribute to the generation of bistability by positive feedback, and can promote the production of biochemical oscillations in negative feedback loops. This makes ultrasensitivity a key building block in systems biology and synthetic biology. having two stable steady states for a single value of the input, as contrasted with a monostable response. in the present context, it is an algebraic equation of the form Xtot = X1 + X2 + ..., where species X is interconverted among various forms (X1, X2....) but the total concentration of X (Xtot) does not change with respect to time. a characteristic of some multistep processes where completing some of the early steps makes a later step more favorable. Examples include the multistep binding of oxygen to hemoglobin and priming in multisite phosphorylation. effective concentration 50; the concentration of a stimulus required for a half-maximal (50%) response. an input-output relationship of the form Output=InputnKn+Inputn, where n is the Hill exponent or Hill coefficient. The larger the Hill exponent, the more ultrasensitive the response. a simple kinetic scheme where the rate of a reaction is directly proportional to the concentration of the substrate or substrates involved in the reaction. This contrasts with Michaelis–Menten kinetics or kinetic schemes involving Hill functions. a model for the rate of an enzymatic reaction, premised on the assumption that the enzyme is small in concentration compared to its substrate, and that the concentration of the enzyme-substrate complex is unchanging with respect to time. In the Michaelis–Menten model the rate of an enzymatic reaction is given by: dProductdt=VmaxSubstrateKm+Substrate. a hyperbolic relationship between the input to a system and its steady-state response, described by an equation of the form Output=InputEC50+Input. The equation for the response resembles the Michaelis–Menten equation (above), hence the name. Note though that a Michaelian response is obtained when the activities of the enzymes that produce the output are described by the law of mass action, not the Michealis–Menten equation. See Part 1 of this series [1Ferrell Jr, J.E. Ha S.H. Ultrasensitivity part I: Michaelian responses and zero-order ultrasensitivity.Trends Biochem. Sci. 2014; 39: 496-503Abstract Full Text Full Text PDF PubMed Scopus (124) Google Scholar] for further discussion. having one stable steady-state output for each value of the input, as contrasted with bistable or multistable responses. having two or more stable steady-state output for each value of the input, as contrasted with a monostable response. a type of limit cycle oscillator with a bistable trigger, where one slowly changing species causes a second rapidly-changing species to switch between discrete states. a property of steady-state input-output relationships that makes them switch-like in character. Goldbeter and Koshland defined input-output relationships to be ultrasensitive if it took less than an 81-fold change in input stimulus to drive the output from 10% to 90% of maximum. a zero-order chemical or biochemical reaction is one where the rate of the reaction is independent of the substrate concentration. Enzyme reactions approach zero-order when the enzyme is saturated with substrate." @default.
- W2023363172 created "2016-06-24" @default.
- W2023363172 creator A5007372909 @default.
- W2023363172 creator A5072018457 @default.
- W2023363172 date "2014-12-01" @default.
- W2023363172 modified "2023-10-13" @default.
- W2023363172 title "Ultrasensitivity part III: cascades, bistable switches, and oscillators" @default.
- W2023363172 cites W1645305843 @default.
- W2023363172 cites W165850321 @default.
- W2023363172 cites W1964756055 @default.
- W2023363172 cites W1969154599 @default.
- W2023363172 cites W1970661255 @default.
- W2023363172 cites W1971327350 @default.
- W2023363172 cites W1992485210 @default.
- W2023363172 cites W1994106868 @default.
- W2023363172 cites W1998318331 @default.
- W2023363172 cites W2010658933 @default.
- W2023363172 cites W2032245675 @default.
- W2023363172 cites W2037992356 @default.
- W2023363172 cites W2040273468 @default.
- W2023363172 cites W2048402167 @default.
- W2023363172 cites W2049047355 @default.
- W2023363172 cites W2049336663 @default.
- W2023363172 cites W2059345773 @default.
- W2023363172 cites W2060350357 @default.
- W2023363172 cites W2069881137 @default.
- W2023363172 cites W2070658593 @default.
- W2023363172 cites W2075721728 @default.
- W2023363172 cites W2077326330 @default.
- W2023363172 cites W2110071847 @default.
- W2023363172 cites W2132828256 @default.
- W2023363172 cites W2153100796 @default.
- W2023363172 doi "https://doi.org/10.1016/j.tibs.2014.10.002" @default.
- W2023363172 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4254632" @default.
- W2023363172 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25456048" @default.
- W2023363172 hasPublicationYear "2014" @default.
- W2023363172 type Work @default.
- W2023363172 sameAs 2023363172 @default.
- W2023363172 citedByCount "145" @default.
- W2023363172 countsByYear W20233631722015 @default.
- W2023363172 countsByYear W20233631722016 @default.
- W2023363172 countsByYear W20233631722017 @default.
- W2023363172 countsByYear W20233631722018 @default.
- W2023363172 countsByYear W20233631722019 @default.
- W2023363172 countsByYear W20233631722020 @default.
- W2023363172 countsByYear W20233631722021 @default.
- W2023363172 countsByYear W20233631722022 @default.
- W2023363172 countsByYear W20233631722023 @default.
- W2023363172 crossrefType "journal-article" @default.
- W2023363172 hasAuthorship W2023363172A5007372909 @default.
- W2023363172 hasAuthorship W2023363172A5072018457 @default.
- W2023363172 hasBestOaLocation W20233631722 @default.
- W2023363172 hasConcept C119599485 @default.
- W2023363172 hasConcept C121332964 @default.
- W2023363172 hasConcept C127413603 @default.
- W2023363172 hasConcept C41008148 @default.
- W2023363172 hasConcept C48207687 @default.
- W2023363172 hasConcept C62520636 @default.
- W2023363172 hasConcept C86803240 @default.
- W2023363172 hasConcept C97292510 @default.
- W2023363172 hasConceptScore W2023363172C119599485 @default.
- W2023363172 hasConceptScore W2023363172C121332964 @default.
- W2023363172 hasConceptScore W2023363172C127413603 @default.
- W2023363172 hasConceptScore W2023363172C41008148 @default.
- W2023363172 hasConceptScore W2023363172C48207687 @default.
- W2023363172 hasConceptScore W2023363172C62520636 @default.
- W2023363172 hasConceptScore W2023363172C86803240 @default.
- W2023363172 hasConceptScore W2023363172C97292510 @default.
- W2023363172 hasIssue "12" @default.
- W2023363172 hasLocation W20233631721 @default.
- W2023363172 hasLocation W20233631722 @default.
- W2023363172 hasLocation W20233631723 @default.
- W2023363172 hasLocation W20233631724 @default.
- W2023363172 hasOpenAccess W2023363172 @default.
- W2023363172 hasPrimaryLocation W20233631721 @default.
- W2023363172 hasRelatedWork W1970980747 @default.
- W2023363172 hasRelatedWork W1996912812 @default.
- W2023363172 hasRelatedWork W2032674711 @default.
- W2023363172 hasRelatedWork W2056085579 @default.
- W2023363172 hasRelatedWork W2056879222 @default.
- W2023363172 hasRelatedWork W2060350357 @default.
- W2023363172 hasRelatedWork W2101647844 @default.
- W2023363172 hasRelatedWork W2473732499 @default.
- W2023363172 hasRelatedWork W2800575961 @default.
- W2023363172 hasRelatedWork W3208766294 @default.
- W2023363172 hasVolume "39" @default.
- W2023363172 isParatext "false" @default.
- W2023363172 isRetracted "false" @default.
- W2023363172 magId "2023363172" @default.
- W2023363172 workType "article" @default.