Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023372691> ?p ?o ?g. }
- W2023372691 endingPage "14324" @default.
- W2023372691 startingPage "14291" @default.
- W2023372691 abstract "The primary focus of this review is tropical‐extratropical interactions and especially the issues involved in determining the response of the extratropical atmosphere to tropical forcing associated with sea surface temperature (SST) anomalies. The review encompasses observations, empirical studies, theory and modeling of the extratropical teleconnections with a focus on developments over the Tropical Oceans‐Global Atmosphere (TOGA) decade and the current state of understanding. In the tropical atmosphere, anomalous SSTs force anomalies in convection and large‐scale overturning with subsidence in the descending branch of the local Hadley circulation. The resulting strong upper tropospheric divergence in the tropics and convergence in the subtropics act as a Rossby wave source. The climatological stationary planetary waves and associated jet streams, especially in the northern hemisphere, can make the total Rossby wave sources somewhat insensitive to the position of the tropical heating that induces them and thus can create preferred teleconnection response patterns, such as the Pacific‐North American (PNA) pattern. However, a number of factors influence the dispersion and propagation of Rossby waves through the atmosphere, including zonal asymmetries in the climatological state, transients, and baroclinic and nonlinear effects. Internal midlatitude sources can amplify perturbations. Observations, modeling, and theory have clearly shown how storm tracks change in response to changes in quasi‐stationary waves and how these changes generally feedback to maintain or strengthen the dominant perturbations through vorticity and momentum transports. The response of the extratropical atmosphere naturally induces changes in the underlying surface, so that there are changes in extratropical SSTs and changes in land surface hydrology and moisture availability that can feedback and influence the total response. Land surface processes are believed to be especially important in spring and summer. Anomalous SSTs and tropical forcing have tended to be strongest in the northern winter, and teleconnections in the southern hemisphere are weaker and more variable and thus more inclined to be masked by natural variability. Occasional strong forcing in seasons other than winter can produce strong and identifiable signals in the northern hemisphere and, because the noise of natural variability is less, the signal‐to‐noise ratio can be large. The relative importance of tropical versus extratropical SST forcings has been established through numerical experiments with atmospheric general circulation models (AGCMs). Predictability of anomalous circulation and associated surface temperature and precipitation in the extratropics is somewhat limited by the difficulty of finding a modest signal embedded in the high level of noise from natural variability in the extratropics, and the complexity and variety of the possible feedbacks. Accordingly, ensembles of AGCM runs and time averaging are needed to identify signals and make predictions. Strong anomalous tropical forcing provides opportunities for skillful forecasts, and the accuracy and usefulness of forecasts is expected to improve as the ability to forecast the anomalous SSTs improves, as models improve, and as the information available from the mean and the spread of ensemble forecasts is better utilized." @default.
- W2023372691 created "2016-06-24" @default.
- W2023372691 creator A5005436052 @default.
- W2023372691 creator A5010658853 @default.
- W2023372691 creator A5027561819 @default.
- W2023372691 creator A5037996237 @default.
- W2023372691 creator A5044162018 @default.
- W2023372691 creator A5057864904 @default.
- W2023372691 date "1998-06-29" @default.
- W2023372691 modified "2023-10-14" @default.
- W2023372691 title "Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures" @default.
- W2023372691 cites W1140836750 @default.
- W2023372691 cites W119981339 @default.
- W2023372691 cites W120405837 @default.
- W2023372691 cites W124781697 @default.
- W2023372691 cites W1964276382 @default.
- W2023372691 cites W1964842106 @default.
- W2023372691 cites W1966223697 @default.
- W2023372691 cites W1967578396 @default.
- W2023372691 cites W1968655655 @default.
- W2023372691 cites W1969241986 @default.
- W2023372691 cites W1970651456 @default.
- W2023372691 cites W1971107180 @default.
- W2023372691 cites W1971341545 @default.
- W2023372691 cites W1971530081 @default.
- W2023372691 cites W1972490792 @default.
- W2023372691 cites W1973303709 @default.
- W2023372691 cites W1973786900 @default.
- W2023372691 cites W1973863290 @default.
- W2023372691 cites W1974572415 @default.
- W2023372691 cites W1975024484 @default.
- W2023372691 cites W1976368591 @default.
- W2023372691 cites W1976680955 @default.
- W2023372691 cites W1977720271 @default.
- W2023372691 cites W1978375710 @default.
- W2023372691 cites W1980552241 @default.
- W2023372691 cites W1980715350 @default.
- W2023372691 cites W1980948231 @default.
- W2023372691 cites W1981785518 @default.
- W2023372691 cites W1984445448 @default.
- W2023372691 cites W1985310308 @default.
- W2023372691 cites W1985377620 @default.
- W2023372691 cites W1985674117 @default.
- W2023372691 cites W1986381066 @default.
- W2023372691 cites W1987409146 @default.
- W2023372691 cites W1989872308 @default.
- W2023372691 cites W1990419763 @default.
- W2023372691 cites W1992084375 @default.
- W2023372691 cites W1993196883 @default.
- W2023372691 cites W1993249884 @default.
- W2023372691 cites W1993378799 @default.
- W2023372691 cites W1993513250 @default.
- W2023372691 cites W1994100419 @default.
- W2023372691 cites W1995344486 @default.
- W2023372691 cites W1995349031 @default.
- W2023372691 cites W1996295416 @default.
- W2023372691 cites W1997547618 @default.
- W2023372691 cites W1998758571 @default.
- W2023372691 cites W1999162702 @default.
- W2023372691 cites W2000024879 @default.
- W2023372691 cites W2000615294 @default.
- W2023372691 cites W2000747848 @default.
- W2023372691 cites W2000795762 @default.
- W2023372691 cites W2001888702 @default.
- W2023372691 cites W2002852317 @default.
- W2023372691 cites W2004375949 @default.
- W2023372691 cites W2004812501 @default.
- W2023372691 cites W2004917297 @default.
- W2023372691 cites W2005019103 @default.
- W2023372691 cites W2007745213 @default.
- W2023372691 cites W2007810995 @default.
- W2023372691 cites W2007965426 @default.
- W2023372691 cites W2009945758 @default.
- W2023372691 cites W2010094196 @default.
- W2023372691 cites W2010644476 @default.
- W2023372691 cites W2011588171 @default.
- W2023372691 cites W2014164961 @default.
- W2023372691 cites W2014944844 @default.
- W2023372691 cites W2015002462 @default.
- W2023372691 cites W2015675410 @default.
- W2023372691 cites W2016071887 @default.
- W2023372691 cites W2018084245 @default.
- W2023372691 cites W2022594695 @default.
- W2023372691 cites W2022690347 @default.
- W2023372691 cites W2023128436 @default.
- W2023372691 cites W2024755390 @default.
- W2023372691 cites W2025640957 @default.
- W2023372691 cites W2025861108 @default.
- W2023372691 cites W2027703519 @default.
- W2023372691 cites W2029275523 @default.
- W2023372691 cites W2030661796 @default.
- W2023372691 cites W2033254152 @default.
- W2023372691 cites W2033482020 @default.
- W2023372691 cites W2035299525 @default.
- W2023372691 cites W2036659209 @default.
- W2023372691 cites W2038903541 @default.
- W2023372691 cites W2039616481 @default.
- W2023372691 cites W2043058880 @default.