Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023387502> ?p ?o ?g. }
- W2023387502 endingPage "192" @default.
- W2023387502 startingPage "177" @default.
- W2023387502 abstract "The mass settling flux, which is defined as the product of the concentration and the settling velocity, is of prime importance with respect to both stratified and well mixed estuarine conditions. The determination of these fluxes (for applied modelling purposes) in high energy tidal estuarine environments, is very problematic. This is because the muddy sediments which dominate in estuaries, flocculate producing a variety of sizes and settling velocities, and this flocculation process is not understood well enough to be fully described theoretically. By drawing on examples of floc spectra acquired in-situ using the INSSEV system, this study explains how mass settling fluxes in the near-bed region can vary by three or four orders of magnitude in meso- and macro-tidal estuaries throughout a single tidal cycle. A floc population representative of dilute suspension conditions on a neap tide, indicated only 35% of the floc mass was macroflocs (> 160 μm). However, the macrofloc settling velocity = 2.4 mm s− 1; three times faster than the microflocs, which meant the former fraction contributed 57% of the 205 mg m− 2s− 1 settling flux. Both highly concentrated (4–6 g l− 1) and very turbulent spring tide conditions (τ > 1.6 N m− 2) produced a bi-modal distribution in terms of the floc size and dry mass. With the former, 54% of the mass was contained within the 240–480 μm size fraction, with a further 25% of the dry floc mass in the flocs over 480 μm in diameter. These large flocs had settling velocities between 4–8 mm s− 1, which meant 99.5% of the settling flux (33.5 g m− 2s− 1) was accredited to the macroflocs. The high turbulence environment saw the dry floc mass distribution shift 60:40 in favour of the microflocs. The microfloc settling velocity was 1.45 mm s− 1, 0.35 mm s− 1 faster than the larger macrofloc fraction. In terms of the total mass settling flux, 0.9 g m− 2 s− 1, this translates into the microflocs contributing 70% during high turbulence. At slack water the flux only reached 12 mg m− 2 s− 1 and macrofloc growth was mainly attributed to differential settling. Continuous floc observations made over a complete tidal cycle revealed that the asymmetrical distribution of the tidal energy generated throughout the spring conditions in the Tamar estuary demonstrated a distinct control on the flocculation process. The less turbulent ebb produced 86% of the total tidal cycle mass settling flux, of which only 8% of the settling flux was outside the turbidity maximum. An attempt to simulate these large settling fluxes by using a constant settling rate of 0.5 mm s− 1, under-estimated the tidal cycle settling flux by 78%, with less than 15% of the total flux being estimated during the advection of the turbidity maximum on the ebb. In contrast, using a faster constant settling velocity parameter of 5 mm s− 1, (representative of the macrofloc fraction), resulted in a mass flux over-estimate of 116% for the tidal cycle duration." @default.
- W2023387502 created "2016-06-24" @default.
- W2023387502 creator A5004784191 @default.
- W2023387502 creator A5020786491 @default.
- W2023387502 date "2006-12-01" @default.
- W2023387502 modified "2023-10-18" @default.
- W2023387502 title "Variability in cohesive sediment settling fluxes: Observations under different estuarine tidal conditions" @default.
- W2023387502 cites W1981520915 @default.
- W2023387502 cites W1988253365 @default.
- W2023387502 cites W1991449845 @default.
- W2023387502 cites W1991987984 @default.
- W2023387502 cites W2002614773 @default.
- W2023387502 cites W2008501065 @default.
- W2023387502 cites W2009501236 @default.
- W2023387502 cites W2017269681 @default.
- W2023387502 cites W2018968906 @default.
- W2023387502 cites W2021081214 @default.
- W2023387502 cites W2028459613 @default.
- W2023387502 cites W2038257338 @default.
- W2023387502 cites W2038907291 @default.
- W2023387502 cites W2054443626 @default.
- W2023387502 cites W2055232078 @default.
- W2023387502 cites W2088643253 @default.
- W2023387502 cites W2090660661 @default.
- W2023387502 cites W2091868693 @default.
- W2023387502 cites W2094135014 @default.
- W2023387502 cites W2135640314 @default.
- W2023387502 cites W2151427711 @default.
- W2023387502 cites W2158739039 @default.
- W2023387502 doi "https://doi.org/10.1016/j.margeo.2006.10.013" @default.
- W2023387502 hasPublicationYear "2006" @default.
- W2023387502 type Work @default.
- W2023387502 sameAs 2023387502 @default.
- W2023387502 citedByCount "59" @default.
- W2023387502 countsByYear W20233875022012 @default.
- W2023387502 countsByYear W20233875022013 @default.
- W2023387502 countsByYear W20233875022014 @default.
- W2023387502 countsByYear W20233875022015 @default.
- W2023387502 countsByYear W20233875022016 @default.
- W2023387502 countsByYear W20233875022017 @default.
- W2023387502 countsByYear W20233875022018 @default.
- W2023387502 countsByYear W20233875022019 @default.
- W2023387502 countsByYear W20233875022020 @default.
- W2023387502 countsByYear W20233875022021 @default.
- W2023387502 countsByYear W20233875022022 @default.
- W2023387502 countsByYear W20233875022023 @default.
- W2023387502 crossrefType "journal-article" @default.
- W2023387502 hasAuthorship W2023387502A5004784191 @default.
- W2023387502 hasAuthorship W2023387502A5020786491 @default.
- W2023387502 hasConcept C105341887 @default.
- W2023387502 hasConcept C111368507 @default.
- W2023387502 hasConcept C114793014 @default.
- W2023387502 hasConcept C121332964 @default.
- W2023387502 hasConcept C127313418 @default.
- W2023387502 hasConcept C144024400 @default.
- W2023387502 hasConcept C148815931 @default.
- W2023387502 hasConcept C149923435 @default.
- W2023387502 hasConcept C159390177 @default.
- W2023387502 hasConcept C173209714 @default.
- W2023387502 hasConcept C178790620 @default.
- W2023387502 hasConcept C185592680 @default.
- W2023387502 hasConcept C187320778 @default.
- W2023387502 hasConcept C202444582 @default.
- W2023387502 hasConcept C2816523 @default.
- W2023387502 hasConcept C2908647359 @default.
- W2023387502 hasConcept C29941650 @default.
- W2023387502 hasConcept C33923547 @default.
- W2023387502 hasConcept C39432304 @default.
- W2023387502 hasConcept C57879066 @default.
- W2023387502 hasConcept C5961521 @default.
- W2023387502 hasConcept C68709404 @default.
- W2023387502 hasConcept C76886044 @default.
- W2023387502 hasConcept C87717796 @default.
- W2023387502 hasConcept C88160329 @default.
- W2023387502 hasConcept C91586092 @default.
- W2023387502 hasConcept C91738503 @default.
- W2023387502 hasConceptScore W2023387502C105341887 @default.
- W2023387502 hasConceptScore W2023387502C111368507 @default.
- W2023387502 hasConceptScore W2023387502C114793014 @default.
- W2023387502 hasConceptScore W2023387502C121332964 @default.
- W2023387502 hasConceptScore W2023387502C127313418 @default.
- W2023387502 hasConceptScore W2023387502C144024400 @default.
- W2023387502 hasConceptScore W2023387502C148815931 @default.
- W2023387502 hasConceptScore W2023387502C149923435 @default.
- W2023387502 hasConceptScore W2023387502C159390177 @default.
- W2023387502 hasConceptScore W2023387502C173209714 @default.
- W2023387502 hasConceptScore W2023387502C178790620 @default.
- W2023387502 hasConceptScore W2023387502C185592680 @default.
- W2023387502 hasConceptScore W2023387502C187320778 @default.
- W2023387502 hasConceptScore W2023387502C202444582 @default.
- W2023387502 hasConceptScore W2023387502C2816523 @default.
- W2023387502 hasConceptScore W2023387502C2908647359 @default.
- W2023387502 hasConceptScore W2023387502C29941650 @default.
- W2023387502 hasConceptScore W2023387502C33923547 @default.
- W2023387502 hasConceptScore W2023387502C39432304 @default.
- W2023387502 hasConceptScore W2023387502C57879066 @default.
- W2023387502 hasConceptScore W2023387502C5961521 @default.
- W2023387502 hasConceptScore W2023387502C68709404 @default.