Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023392999> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2023392999 endingPage "512" @default.
- W2023392999 startingPage "481" @default.
- W2023392999 abstract "This paper is divided into two parts and focuses on the linear independence of boundary traces of eigenfunctions of boundary value problems. Part I deals with second-order elliptic operators, and Part II with Stokes (and Oseen) operators. Part I: Let λi be an eigenvalue of a second-order elliptic operator defined on an open, sufficiently smooth, bounded domain Ω in Rn, with Neumann homogeneous boundary conditions on Γ = ∂Ω. Let {φij} j=1 be the corresponding linearly independent (normalized) eigenfunctions in L2(Ω), so that `i is the geometric multiplicity of λi. We prove that the Dirichlet boundary traces {φij |Γ1} `i j=1 are linearly independent in L2(Γ1). Here Γ1 is an arbitrary open, connected portion of Γ , of positive surface measure. The same conclusion holds true if the setting {Neumann B.C., Dirichlet boundary traces} is replaced by the setting {Dirichlet B.C., Neumann boundary traces}. These results are motivated by boundary feedback stabilization problems for parabolic equations [L-T.2]. Part II: The same problem is posed for the Stokes operator with motivation coming from the boundary stabilization problems in [B-L-T.1]– [B-L-T.3] (with tangential boundary control), and [R] (with just boundary control), where we take Γ1 = Γ . The aforementioned property of boundary traces of eigenfunctions critically hinges on a unique continuation result from the boundary of corresponding over-determined problems. This is well known in the case of second-order elliptic operators of Part I; but needs to be established in the case of Stokes operators. A few proofs are given here. 2000 Mathematics Subject Classification: 35L20, 47, 49K20, 76N25, 76Q05, 93B29, 93C20." @default.
- W2023392999 created "2016-06-24" @default.
- W2023392999 creator A5002934693 @default.
- W2023392999 date "2008-01-01" @default.
- W2023392999 modified "2023-09-27" @default.
- W2023392999 title "Linear independence of boundary traces of eigenfunctions of elliptic and Stokes operators and applications" @default.
- W2023392999 cites W1575147392 @default.
- W2023392999 cites W1969177828 @default.
- W2023392999 cites W1976391307 @default.
- W2023392999 cites W2016805534 @default.
- W2023392999 cites W2018207223 @default.
- W2023392999 cites W2030140685 @default.
- W2023392999 cites W2119597296 @default.
- W2023392999 cites W2482762127 @default.
- W2023392999 cites W3111685920 @default.
- W2023392999 cites W3148800415 @default.
- W2023392999 doi "https://doi.org/10.4064/am35-4-6" @default.
- W2023392999 hasPublicationYear "2008" @default.
- W2023392999 type Work @default.
- W2023392999 sameAs 2023392999 @default.
- W2023392999 citedByCount "4" @default.
- W2023392999 countsByYear W20233929992014 @default.
- W2023392999 countsByYear W20233929992019 @default.
- W2023392999 countsByYear W20233929992021 @default.
- W2023392999 countsByYear W20233929992022 @default.
- W2023392999 crossrefType "journal-article" @default.
- W2023392999 hasAuthorship W2023392999A5002934693 @default.
- W2023392999 hasBestOaLocation W20233929991 @default.
- W2023392999 hasConcept C105795698 @default.
- W2023392999 hasConcept C121332964 @default.
- W2023392999 hasConcept C128803854 @default.
- W2023392999 hasConcept C134306372 @default.
- W2023392999 hasConcept C158693339 @default.
- W2023392999 hasConcept C202444582 @default.
- W2023392999 hasConcept C33923547 @default.
- W2023392999 hasConcept C35651441 @default.
- W2023392999 hasConcept C62354387 @default.
- W2023392999 hasConcept C62520636 @default.
- W2023392999 hasConcept C70610323 @default.
- W2023392999 hasConceptScore W2023392999C105795698 @default.
- W2023392999 hasConceptScore W2023392999C121332964 @default.
- W2023392999 hasConceptScore W2023392999C128803854 @default.
- W2023392999 hasConceptScore W2023392999C134306372 @default.
- W2023392999 hasConceptScore W2023392999C158693339 @default.
- W2023392999 hasConceptScore W2023392999C202444582 @default.
- W2023392999 hasConceptScore W2023392999C33923547 @default.
- W2023392999 hasConceptScore W2023392999C35651441 @default.
- W2023392999 hasConceptScore W2023392999C62354387 @default.
- W2023392999 hasConceptScore W2023392999C62520636 @default.
- W2023392999 hasConceptScore W2023392999C70610323 @default.
- W2023392999 hasIssue "4" @default.
- W2023392999 hasLocation W20233929991 @default.
- W2023392999 hasOpenAccess W2023392999 @default.
- W2023392999 hasPrimaryLocation W20233929991 @default.
- W2023392999 hasRelatedWork W1537023606 @default.
- W2023392999 hasRelatedWork W1904002222 @default.
- W2023392999 hasRelatedWork W2031690564 @default.
- W2023392999 hasRelatedWork W2201360558 @default.
- W2023392999 hasRelatedWork W2296223956 @default.
- W2023392999 hasRelatedWork W2347039194 @default.
- W2023392999 hasRelatedWork W2542617830 @default.
- W2023392999 hasRelatedWork W2949881813 @default.
- W2023392999 hasRelatedWork W2962800923 @default.
- W2023392999 hasRelatedWork W4298076721 @default.
- W2023392999 hasVolume "35" @default.
- W2023392999 isParatext "false" @default.
- W2023392999 isRetracted "false" @default.
- W2023392999 magId "2023392999" @default.
- W2023392999 workType "article" @default.