Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023395265> ?p ?o ?g. }
- W2023395265 abstract "Faulty automotive systems significantly degrade the performance and efficiency of vehicles, and oftentimes are the major contributors of vehicle breakdown; they result in large expenditures for repair and maintenance. Therefore, intelligent vehicle health-monitoring schemes are needed for effective fault diagnosis in automotive systems. Previously, we developed a data-driven approach using a data reduction technique, coupled with a variety of classifiers, for fault diagnosis in automotive systems. In this paper, we consider the problem of fusing classifier decisions to reduce diagnostic errors. Specifically, we develop three novel classifier fusion approaches: class-specific Bayesian fusion, joint optimization of fusion center and of individual classifiers, and dynamic fusion. We evaluate the efficacies of these fusion approaches on an automotive engine data. The results demonstrate that dynamic fusion and joint optimization, and class-specific Bayesian fusion outperform traditional fusion approaches. We also show that learning the parameters of individual classifiers as part of the fusion architecture can provide better classification performance." @default.
- W2023395265 created "2016-06-24" @default.
- W2023395265 creator A5045378715 @default.
- W2023395265 creator A5045912471 @default.
- W2023395265 creator A5061971606 @default.
- W2023395265 creator A5072522101 @default.
- W2023395265 creator A5077109703 @default.
- W2023395265 creator A5082001657 @default.
- W2023395265 creator A5083915705 @default.
- W2023395265 creator A5086973578 @default.
- W2023395265 creator A5089734914 @default.
- W2023395265 date "2007-09-01" @default.
- W2023395265 modified "2023-10-16" @default.
- W2023395265 title "Novel classifier fusion approahces for fault diagnosis in automotive systems" @default.
- W2023395265 cites W1488706289 @default.
- W2023395265 cites W1538372379 @default.
- W2023395265 cites W1546113605 @default.
- W2023395265 cites W1552624648 @default.
- W2023395265 cites W1571401318 @default.
- W2023395265 cites W1603849545 @default.
- W2023395265 cites W1676820704 @default.
- W2023395265 cites W1858553808 @default.
- W2023395265 cites W1981586857 @default.
- W2023395265 cites W1988673604 @default.
- W2023395265 cites W1988790447 @default.
- W2023395265 cites W2000858991 @default.
- W2023395265 cites W2002283491 @default.
- W2023395265 cites W2004789217 @default.
- W2023395265 cites W2016648380 @default.
- W2023395265 cites W2023315648 @default.
- W2023395265 cites W2064546251 @default.
- W2023395265 cites W2065663925 @default.
- W2023395265 cites W2089468765 @default.
- W2023395265 cites W2090226684 @default.
- W2023395265 cites W2092316708 @default.
- W2023395265 cites W2107451631 @default.
- W2023395265 cites W2109100253 @default.
- W2023395265 cites W2112076978 @default.
- W2023395265 cites W2115119100 @default.
- W2023395265 cites W2120290123 @default.
- W2023395265 cites W2122949361 @default.
- W2023395265 cites W2131490916 @default.
- W2023395265 cites W2138745909 @default.
- W2023395265 cites W2139212933 @default.
- W2023395265 cites W2140575513 @default.
- W2023395265 cites W2152761983 @default.
- W2023395265 cites W2158275940 @default.
- W2023395265 cites W2159402710 @default.
- W2023395265 cites W2164568552 @default.
- W2023395265 cites W2165335390 @default.
- W2023395265 cites W2172000360 @default.
- W2023395265 cites W2487087946 @default.
- W2023395265 cites W2546067355 @default.
- W2023395265 cites W1980073965 @default.
- W2023395265 cites W2155639125 @default.
- W2023395265 doi "https://doi.org/10.1109/autest.2007.4374227" @default.
- W2023395265 hasPublicationYear "2007" @default.
- W2023395265 type Work @default.
- W2023395265 sameAs 2023395265 @default.
- W2023395265 citedByCount "2" @default.
- W2023395265 countsByYear W20233952652012 @default.
- W2023395265 crossrefType "proceedings-article" @default.
- W2023395265 hasAuthorship W2023395265A5045378715 @default.
- W2023395265 hasAuthorship W2023395265A5045912471 @default.
- W2023395265 hasAuthorship W2023395265A5061971606 @default.
- W2023395265 hasAuthorship W2023395265A5072522101 @default.
- W2023395265 hasAuthorship W2023395265A5077109703 @default.
- W2023395265 hasAuthorship W2023395265A5082001657 @default.
- W2023395265 hasAuthorship W2023395265A5083915705 @default.
- W2023395265 hasAuthorship W2023395265A5086973578 @default.
- W2023395265 hasAuthorship W2023395265A5089734914 @default.
- W2023395265 hasBestOaLocation W20233952652 @default.
- W2023395265 hasConcept C119857082 @default.
- W2023395265 hasConcept C124101348 @default.
- W2023395265 hasConcept C127413603 @default.
- W2023395265 hasConcept C138885662 @default.
- W2023395265 hasConcept C146978453 @default.
- W2023395265 hasConcept C152745839 @default.
- W2023395265 hasConcept C154945302 @default.
- W2023395265 hasConcept C158525013 @default.
- W2023395265 hasConcept C172707124 @default.
- W2023395265 hasConcept C33954974 @default.
- W2023395265 hasConcept C41008148 @default.
- W2023395265 hasConcept C41895202 @default.
- W2023395265 hasConcept C526921623 @default.
- W2023395265 hasConcept C95623464 @default.
- W2023395265 hasConceptScore W2023395265C119857082 @default.
- W2023395265 hasConceptScore W2023395265C124101348 @default.
- W2023395265 hasConceptScore W2023395265C127413603 @default.
- W2023395265 hasConceptScore W2023395265C138885662 @default.
- W2023395265 hasConceptScore W2023395265C146978453 @default.
- W2023395265 hasConceptScore W2023395265C152745839 @default.
- W2023395265 hasConceptScore W2023395265C154945302 @default.
- W2023395265 hasConceptScore W2023395265C158525013 @default.
- W2023395265 hasConceptScore W2023395265C172707124 @default.
- W2023395265 hasConceptScore W2023395265C33954974 @default.
- W2023395265 hasConceptScore W2023395265C41008148 @default.
- W2023395265 hasConceptScore W2023395265C41895202 @default.
- W2023395265 hasConceptScore W2023395265C526921623 @default.
- W2023395265 hasConceptScore W2023395265C95623464 @default.