Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023401178> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W2023401178 endingPage "932" @default.
- W2023401178 startingPage "917" @default.
- W2023401178 abstract "In this paper we generalize the notion of Hopf algebra. We consider an algebra <italic>A</italic>, with or without identity, and a homomorphism <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Delta> <mml:semantics> <mml:mi mathvariant=normal>Δ<!-- Δ --></mml:mi> <mml:annotation encoding=application/x-tex>Delta</mml:annotation> </mml:semantics> </mml:math> </inline-formula> from <italic>A</italic> to the multiplier algebra <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper M left-parenthesis upper A circled-times upper A right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>M</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>A</mml:mi> <mml:mo>⊗<!-- ⊗ --></mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>M(A otimes A)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A circled-times upper A> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>⊗<!-- ⊗ --></mml:mo> <mml:mi>A</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>A otimes A</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We impose certain conditions on <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Delta> <mml:semantics> <mml:mi mathvariant=normal>Δ<!-- Δ --></mml:mi> <mml:annotation encoding=application/x-tex>Delta</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (such as coassociativity). Then we call the pair <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis upper A comma normal upper Delta right-parenthesis> <mml:semantics> <mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi>A</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=normal>Δ<!-- Δ --></mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>(A,Delta )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a multiplier Hopf algebra. The motivating example is the case where <italic>A</italic> is the algebra of complex, finitely supported functions on a group <italic>G</italic> and where <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis normal upper Delta f right-parenthesis left-parenthesis s comma t right-parenthesis equals f left-parenthesis s t right-parenthesis> <mml:semantics> <mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi mathvariant=normal>Δ<!-- Δ --></mml:mi> <mml:mi>f</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo stretchy=false>(</mml:mo> <mml:mi>s</mml:mi> <mml:mo>,</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>f</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>s</mml:mi> <mml:mi>t</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>(Delta f)(s,t) = f(st)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=s comma t element-of upper G> <mml:semantics> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>,</mml:mo> <mml:mi>t</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mi>G</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>s,t in G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=f element-of upper A> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mi>A</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>f in A</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We prove the existence of a counit and an antipode. If <italic>A</italic> has an identity, we have a usual Hopf algebra. We also consider the case where <italic>A</italic> is a <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=asterisk> <mml:semantics> <mml:mo>∗<!-- ∗ --></mml:mo> <mml:annotation encoding=application/x-tex>ast</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-algebra. Then we show that (a large enough) subspace of the dual space can also be made into a <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=asterisk> <mml:semantics> <mml:mo>∗<!-- ∗ --></mml:mo> <mml:annotation encoding=application/x-tex>ast</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-algebra." @default.
- W2023401178 created "2016-06-24" @default.
- W2023401178 creator A5027202272 @default.
- W2023401178 date "1994-01-01" @default.
- W2023401178 modified "2023-09-24" @default.
- W2023401178 title "Multiplier Hopf algebras" @default.
- W2023401178 cites W175896080 @default.
- W2023401178 cites W2037328702 @default.
- W2023401178 cites W2101145108 @default.
- W2023401178 doi "https://doi.org/10.1090/s0002-9947-1994-1220906-5" @default.
- W2023401178 hasPublicationYear "1994" @default.
- W2023401178 type Work @default.
- W2023401178 sameAs 2023401178 @default.
- W2023401178 citedByCount "172" @default.
- W2023401178 countsByYear W20234011782012 @default.
- W2023401178 countsByYear W20234011782013 @default.
- W2023401178 countsByYear W20234011782014 @default.
- W2023401178 countsByYear W20234011782015 @default.
- W2023401178 countsByYear W20234011782016 @default.
- W2023401178 countsByYear W20234011782017 @default.
- W2023401178 countsByYear W20234011782018 @default.
- W2023401178 countsByYear W20234011782019 @default.
- W2023401178 countsByYear W20234011782020 @default.
- W2023401178 countsByYear W20234011782021 @default.
- W2023401178 countsByYear W20234011782022 @default.
- W2023401178 countsByYear W20234011782023 @default.
- W2023401178 crossrefType "journal-article" @default.
- W2023401178 hasAuthorship W2023401178A5027202272 @default.
- W2023401178 hasBestOaLocation W20234011781 @default.
- W2023401178 hasConcept C11413529 @default.
- W2023401178 hasConcept C154945302 @default.
- W2023401178 hasConcept C2776321320 @default.
- W2023401178 hasConcept C33923547 @default.
- W2023401178 hasConcept C41008148 @default.
- W2023401178 hasConceptScore W2023401178C11413529 @default.
- W2023401178 hasConceptScore W2023401178C154945302 @default.
- W2023401178 hasConceptScore W2023401178C2776321320 @default.
- W2023401178 hasConceptScore W2023401178C33923547 @default.
- W2023401178 hasConceptScore W2023401178C41008148 @default.
- W2023401178 hasIssue "2" @default.
- W2023401178 hasLocation W20234011781 @default.
- W2023401178 hasOpenAccess W2023401178 @default.
- W2023401178 hasPrimaryLocation W20234011781 @default.
- W2023401178 hasRelatedWork W1529400504 @default.
- W2023401178 hasRelatedWork W1892467659 @default.
- W2023401178 hasRelatedWork W2143954309 @default.
- W2023401178 hasRelatedWork W2333703843 @default.
- W2023401178 hasRelatedWork W2334690443 @default.
- W2023401178 hasRelatedWork W2386767533 @default.
- W2023401178 hasRelatedWork W2394022102 @default.
- W2023401178 hasRelatedWork W2469937864 @default.
- W2023401178 hasRelatedWork W2808586768 @default.
- W2023401178 hasRelatedWork W2998403542 @default.
- W2023401178 hasVolume "342" @default.
- W2023401178 isParatext "false" @default.
- W2023401178 isRetracted "false" @default.
- W2023401178 magId "2023401178" @default.
- W2023401178 workType "article" @default.