Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023406695> ?p ?o ?g. }
- W2023406695 endingPage "B659" @default.
- W2023406695 startingPage "B642" @default.
- W2023406695 abstract "A formalism is developed for a statistical treatment of the energy variations of nuclear scattering and reaction cross sections. A statistical collision matrix ${mathrm{U}}^{S}$ is defined which has the form of an energy-independent direct-transition matrix plus a fixed simple resonance-pole expansion, the matrix residues of which are products of complex channel-width amplitudes. By direct comparison with the Wigner-Eisenbud and Kapur-Peierls collision matrices it is found that under widely applicable conditions the statistical collision matrix may be used to calculate averages of observables over energy intervals containing many resonances and many total widths. The problem of determining the statistical properties of the parameters of ${mathrm{U}}^{S}$ is defined and is solved for several special cases by relating it to the statistics of $R$-matrix parameters. Using these methods averages and mean-square fluctuations of total and reaction cross sections are calculated under general conditions admitting direct and compound processes and arbitrary average values of the total widths $ensuremath{Gamma}$ and the resonance spacings $D$. The results are expressed in terms of the direct-reaction matrix elements and the statistical properties of resonance parameters appropriate to the energy region under consideration and are related to the locally applicable optical-model phase shifts and transmission coefficients. Simplifications are obtained under special assumptions such as uncorrelated width amplitudes, small and large $frac{ensuremath{Gamma}}{D}$, pure compound-nucleus reactions, many competing open channels, and many competing direct processes. In the limit of small $frac{ensuremath{Gamma}}{D}$ one obtains the leading terms of an expansion of the average cross section which had previously been derived from $R$-matrix theory directly. In the limit of large $frac{ensuremath{Gamma}}{D}$, many competing channels, but no direct reactions, the nonelastic fluctuation (or average compound nucleus) cross sections approach the Hauser-Feshbach formula. Except in this limit, corrections due to partial-width fluctuations and resonance-resonance interference are applicable. The former are sensitive to the magnitudes of direct reaction matrix elements, the latter to the correlations of resonance energies. Competing direct reactions are shown to require reductions of the transmission coefficients. The mean-square fluctuations of cross sections are found to approach Ericson's results in the limit of large $frac{ensuremath{Gamma}}{D}$ and many competing channels, but are in general much larger for moderate $frac{ensuremath{Gamma}}{D}$ and few channels. They are also sensitive to the details of resonance parameter statistics." @default.
- W2023406695 created "2016-06-24" @default.
- W2023406695 creator A5002688050 @default.
- W2023406695 date "1964-08-10" @default.
- W2023406695 modified "2023-09-25" @default.
- W2023406695 title "Statistical Theory of Nuclear Collision Cross Sections" @default.
- W2023406695 cites W1981244505 @default.
- W2023406695 cites W1981686511 @default.
- W2023406695 cites W1989624640 @default.
- W2023406695 cites W1990175716 @default.
- W2023406695 cites W1996592636 @default.
- W2023406695 cites W2000422713 @default.
- W2023406695 cites W2007582587 @default.
- W2023406695 cites W2011219253 @default.
- W2023406695 cites W2013551140 @default.
- W2023406695 cites W2017274654 @default.
- W2023406695 cites W2030167001 @default.
- W2023406695 cites W2038170352 @default.
- W2023406695 cites W2040287172 @default.
- W2023406695 cites W2042859738 @default.
- W2023406695 cites W2048595734 @default.
- W2023406695 cites W2048831010 @default.
- W2023406695 cites W2049587182 @default.
- W2023406695 cites W2051428366 @default.
- W2023406695 cites W2056587564 @default.
- W2023406695 cites W2057408321 @default.
- W2023406695 cites W2058854293 @default.
- W2023406695 cites W2060003673 @default.
- W2023406695 cites W2061915508 @default.
- W2023406695 cites W2062466586 @default.
- W2023406695 cites W2071178702 @default.
- W2023406695 cites W2075558140 @default.
- W2023406695 cites W2077809553 @default.
- W2023406695 cites W2079747164 @default.
- W2023406695 cites W2085363115 @default.
- W2023406695 cites W2090282573 @default.
- W2023406695 cites W2093577844 @default.
- W2023406695 cites W2150428861 @default.
- W2023406695 cites W2314931742 @default.
- W2023406695 cites W2581122289 @default.
- W2023406695 cites W4240064753 @default.
- W2023406695 cites W4243997607 @default.
- W2023406695 cites W4244651065 @default.
- W2023406695 cites W4248383505 @default.
- W2023406695 cites W4251039345 @default.
- W2023406695 doi "https://doi.org/10.1103/physrev.135.b642" @default.
- W2023406695 hasPublicationYear "1964" @default.
- W2023406695 type Work @default.
- W2023406695 sameAs 2023406695 @default.
- W2023406695 citedByCount "234" @default.
- W2023406695 countsByYear W20234066952013 @default.
- W2023406695 countsByYear W20234066952014 @default.
- W2023406695 countsByYear W20234066952015 @default.
- W2023406695 countsByYear W20234066952017 @default.
- W2023406695 countsByYear W20234066952018 @default.
- W2023406695 countsByYear W20234066952019 @default.
- W2023406695 countsByYear W20234066952020 @default.
- W2023406695 countsByYear W20234066952021 @default.
- W2023406695 countsByYear W20234066952022 @default.
- W2023406695 crossrefType "journal-article" @default.
- W2023406695 hasAuthorship W2023406695A5002688050 @default.
- W2023406695 hasConcept C105795698 @default.
- W2023406695 hasConcept C106487976 @default.
- W2023406695 hasConcept C121332964 @default.
- W2023406695 hasConcept C121704057 @default.
- W2023406695 hasConcept C139210041 @default.
- W2023406695 hasConcept C159985019 @default.
- W2023406695 hasConcept C161094330 @default.
- W2023406695 hasConcept C180205008 @default.
- W2023406695 hasConcept C184779094 @default.
- W2023406695 hasConcept C191486275 @default.
- W2023406695 hasConcept C192562407 @default.
- W2023406695 hasConcept C32848918 @default.
- W2023406695 hasConcept C33923547 @default.
- W2023406695 hasConcept C37914503 @default.
- W2023406695 hasConcept C38652104 @default.
- W2023406695 hasConcept C41008148 @default.
- W2023406695 hasConcept C48057537 @default.
- W2023406695 hasConcept C62520636 @default.
- W2023406695 hasConceptScore W2023406695C105795698 @default.
- W2023406695 hasConceptScore W2023406695C106487976 @default.
- W2023406695 hasConceptScore W2023406695C121332964 @default.
- W2023406695 hasConceptScore W2023406695C121704057 @default.
- W2023406695 hasConceptScore W2023406695C139210041 @default.
- W2023406695 hasConceptScore W2023406695C159985019 @default.
- W2023406695 hasConceptScore W2023406695C161094330 @default.
- W2023406695 hasConceptScore W2023406695C180205008 @default.
- W2023406695 hasConceptScore W2023406695C184779094 @default.
- W2023406695 hasConceptScore W2023406695C191486275 @default.
- W2023406695 hasConceptScore W2023406695C192562407 @default.
- W2023406695 hasConceptScore W2023406695C32848918 @default.
- W2023406695 hasConceptScore W2023406695C33923547 @default.
- W2023406695 hasConceptScore W2023406695C37914503 @default.
- W2023406695 hasConceptScore W2023406695C38652104 @default.
- W2023406695 hasConceptScore W2023406695C41008148 @default.
- W2023406695 hasConceptScore W2023406695C48057537 @default.
- W2023406695 hasConceptScore W2023406695C62520636 @default.
- W2023406695 hasIssue "3B" @default.