Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023409861> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2023409861 endingPage "104" @default.
- W2023409861 startingPage "85" @default.
- W2023409861 abstract "We show that the set of colored Jones polynomials and the set of generalized Alexander polynomials defined by Akutsu, Deguchi and Ohtsuki intersect non-trivially. Moreover it is shown that the intersection is (at least includes) the set of Kashaev’s quantum dilogarithm invariants for links. Therefore Kashaev’s conjecture can be restated as follows: The colored Jones polynomials determine the hyperbolic volume for a hyperbolic knot. Modifying this, we propose a stronger conjecture: The colored Jones polynomials determine the simplicial volume for any knot. If our conjecture is true, then we can prove that a knot is trivial if and only if all of its Vassiliev invariants are trivial. In [13], R.M. Kashaev defined a family of complex valued link invariants indexed by integers N ≥ 2 using the quantum dilogarithm. Later he calculated the asymptotic behavior of his invariant and observed that for the three simplest hyperbolic knots it grows as exp(Vol(K)N/2π) when N goes to the infinity, where Vol(K) is the hyperbolic volume of the complement of a knotK [14]. This amazing result and his conjecture that the same also holds for any hyperbolic knot have been almost ignored by mathematicians since his definition of the invariant is too complicated (though it uses only elementary tools). The aim of this paper is to reveal his mysterious definition and to show that his invariant is nothing but a specialization of the colored Jones polynomial. The colored Jones polynomial is defined for colored links (each component is decorated with an irreducible representation of the Lie algebra sl(2,C)). The original Jones polynomial corresponds to the case that all the colors are identical to the 2-dimensional fundamental representation. We show that Kashaev’s invariant with parameter N coincides with the colored Jones polynomial in a certain normalization with every color the N -dimensional representation, evaluated at the primitive N -th root of unity. (We have to normalize the colored Jones polynomial so that the value for the trivial knot is one, for otherwise it always vanishes). On the other hand there are other colored polynomial invariants, the generalized multivariable Alexander polynomial defined by Y. Akutsu, T. Deguchi and T. Ohtsuki [1]. They used the same Lie algebra sl(2,C) but a different hierarchy of representations. Their invariants are parameterized by c+1 parameters; an integer Date: February 1, 2008. 1991 Mathematics Subject Classification. 57M25, 57M50, 17B37, 81R50." @default.
- W2023409861 created "2016-06-24" @default.
- W2023409861 creator A5013939711 @default.
- W2023409861 creator A5061984117 @default.
- W2023409861 date "2001-01-01" @default.
- W2023409861 modified "2023-10-16" @default.
- W2023409861 title "The colored Jones polynomials and the simplicial volume of a knot" @default.
- W2023409861 cites W1554601627 @default.
- W2023409861 cites W172027785 @default.
- W2023409861 cites W1974272713 @default.
- W2023409861 cites W1993127353 @default.
- W2023409861 cites W1997065775 @default.
- W2023409861 cites W2000720204 @default.
- W2023409861 cites W2007484848 @default.
- W2023409861 cites W2019578387 @default.
- W2023409861 cites W2040372902 @default.
- W2023409861 cites W2044281641 @default.
- W2023409861 cites W2045817582 @default.
- W2023409861 cites W2057156263 @default.
- W2023409861 cites W2070143979 @default.
- W2023409861 cites W2089023423 @default.
- W2023409861 cites W2091253256 @default.
- W2023409861 cites W2136209605 @default.
- W2023409861 cites W2141597793 @default.
- W2023409861 cites W4234736639 @default.
- W2023409861 cites W4362202528 @default.
- W2023409861 cites W2577191929 @default.
- W2023409861 doi "https://doi.org/10.1007/bf02392716" @default.
- W2023409861 hasPublicationYear "2001" @default.
- W2023409861 type Work @default.
- W2023409861 sameAs 2023409861 @default.
- W2023409861 citedByCount "357" @default.
- W2023409861 countsByYear W20234098612012 @default.
- W2023409861 countsByYear W20234098612013 @default.
- W2023409861 countsByYear W20234098612014 @default.
- W2023409861 countsByYear W20234098612015 @default.
- W2023409861 countsByYear W20234098612016 @default.
- W2023409861 countsByYear W20234098612017 @default.
- W2023409861 countsByYear W20234098612018 @default.
- W2023409861 countsByYear W20234098612019 @default.
- W2023409861 countsByYear W20234098612020 @default.
- W2023409861 countsByYear W20234098612021 @default.
- W2023409861 countsByYear W20234098612022 @default.
- W2023409861 countsByYear W20234098612023 @default.
- W2023409861 crossrefType "journal-article" @default.
- W2023409861 hasAuthorship W2023409861A5013939711 @default.
- W2023409861 hasAuthorship W2023409861A5061984117 @default.
- W2023409861 hasBestOaLocation W20234098611 @default.
- W2023409861 hasConcept C114614502 @default.
- W2023409861 hasConcept C143330242 @default.
- W2023409861 hasConcept C159985019 @default.
- W2023409861 hasConcept C187929450 @default.
- W2023409861 hasConcept C192562407 @default.
- W2023409861 hasConcept C193125933 @default.
- W2023409861 hasConcept C202444582 @default.
- W2023409861 hasConcept C2778307483 @default.
- W2023409861 hasConcept C2779863119 @default.
- W2023409861 hasConcept C33923547 @default.
- W2023409861 hasConcept C36794415 @default.
- W2023409861 hasConceptScore W2023409861C114614502 @default.
- W2023409861 hasConceptScore W2023409861C143330242 @default.
- W2023409861 hasConceptScore W2023409861C159985019 @default.
- W2023409861 hasConceptScore W2023409861C187929450 @default.
- W2023409861 hasConceptScore W2023409861C192562407 @default.
- W2023409861 hasConceptScore W2023409861C193125933 @default.
- W2023409861 hasConceptScore W2023409861C202444582 @default.
- W2023409861 hasConceptScore W2023409861C2778307483 @default.
- W2023409861 hasConceptScore W2023409861C2779863119 @default.
- W2023409861 hasConceptScore W2023409861C33923547 @default.
- W2023409861 hasConceptScore W2023409861C36794415 @default.
- W2023409861 hasIssue "1" @default.
- W2023409861 hasLocation W20234098611 @default.
- W2023409861 hasLocation W20234098612 @default.
- W2023409861 hasLocation W20234098613 @default.
- W2023409861 hasOpenAccess W2023409861 @default.
- W2023409861 hasPrimaryLocation W20234098611 @default.
- W2023409861 hasRelatedWork W1516779793 @default.
- W2023409861 hasRelatedWork W1553770305 @default.
- W2023409861 hasRelatedWork W1829027149 @default.
- W2023409861 hasRelatedWork W1986408119 @default.
- W2023409861 hasRelatedWork W2023409861 @default.
- W2023409861 hasRelatedWork W2771144524 @default.
- W2023409861 hasRelatedWork W2951743531 @default.
- W2023409861 hasRelatedWork W2964276013 @default.
- W2023409861 hasRelatedWork W3092229905 @default.
- W2023409861 hasRelatedWork W4220930172 @default.
- W2023409861 hasVolume "186" @default.
- W2023409861 isParatext "false" @default.
- W2023409861 isRetracted "false" @default.
- W2023409861 magId "2023409861" @default.
- W2023409861 workType "article" @default.