Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023428235> ?p ?o ?g. }
- W2023428235 endingPage "967" @default.
- W2023428235 startingPage "959" @default.
- W2023428235 abstract "Probability hypothesis density (PHD) filter has been demonstrated a promising algorithm for tracking an unknown number of targets in real time. However, this method can only be used in the multi-target tracking systems with known measurement noise variances; otherwise, the tracking performance will decline greatly. To solve this problem, an adaptive PHD filter algorithm is proposed based on the variational Bayesian approximation technique to recursively estimate the joint PHDs of the multi-target states and the time-varying measurement noise variances. First, the variational calculus method is employed to derive the multi-target estimate recursions, and then the Gaussian and the inverse Gamma distributions are introduced to approximate the joint posterior PHD, and achieve a closed-form solution. Simulation results show that the proposed algorithm can effectively estimate the unknown measurement noise variances and has a good performance of multi-target tracking with a strong robustness." @default.
- W2023428235 created "2016-06-24" @default.
- W2023428235 creator A5007738986 @default.
- W2023428235 creator A5091010251 @default.
- W2023428235 date "2013-12-01" @default.
- W2023428235 modified "2023-09-30" @default.
- W2023428235 title "Adaptive probability hypothesis density filter based on variational Bayesian approximation for multi‐target tracking" @default.
- W2023428235 cites W1516089580 @default.
- W2023428235 cites W1976500541 @default.
- W2023428235 cites W1988294545 @default.
- W2023428235 cites W1997202612 @default.
- W2023428235 cites W1999616028 @default.
- W2023428235 cites W2005596676 @default.
- W2023428235 cites W2014787937 @default.
- W2023428235 cites W2057094341 @default.
- W2023428235 cites W2076997230 @default.
- W2023428235 cites W2081405447 @default.
- W2023428235 cites W2086903647 @default.
- W2023428235 cites W2095376999 @default.
- W2023428235 cites W2105905583 @default.
- W2023428235 cites W2107542991 @default.
- W2023428235 cites W2110354007 @default.
- W2023428235 cites W2121038306 @default.
- W2023428235 cites W2126885789 @default.
- W2023428235 cites W2127692198 @default.
- W2023428235 cites W2137585588 @default.
- W2023428235 cites W2150440166 @default.
- W2023428235 cites W2154616225 @default.
- W2023428235 cites W2155680787 @default.
- W2023428235 cites W2155789682 @default.
- W2023428235 cites W2158501888 @default.
- W2023428235 cites W2161435744 @default.
- W2023428235 doi "https://doi.org/10.1049/iet-rsn.2012.0357" @default.
- W2023428235 hasPublicationYear "2013" @default.
- W2023428235 type Work @default.
- W2023428235 sameAs 2023428235 @default.
- W2023428235 citedByCount "28" @default.
- W2023428235 countsByYear W20234282352014 @default.
- W2023428235 countsByYear W20234282352015 @default.
- W2023428235 countsByYear W20234282352016 @default.
- W2023428235 countsByYear W20234282352017 @default.
- W2023428235 countsByYear W20234282352018 @default.
- W2023428235 countsByYear W20234282352019 @default.
- W2023428235 countsByYear W20234282352020 @default.
- W2023428235 countsByYear W20234282352021 @default.
- W2023428235 countsByYear W20234282352022 @default.
- W2023428235 countsByYear W20234282352023 @default.
- W2023428235 crossrefType "journal-article" @default.
- W2023428235 hasAuthorship W2023428235A5007738986 @default.
- W2023428235 hasAuthorship W2023428235A5091010251 @default.
- W2023428235 hasBestOaLocation W20234282351 @default.
- W2023428235 hasConcept C104317684 @default.
- W2023428235 hasConcept C105795698 @default.
- W2023428235 hasConcept C106131492 @default.
- W2023428235 hasConcept C107673813 @default.
- W2023428235 hasConcept C11413529 @default.
- W2023428235 hasConcept C115961682 @default.
- W2023428235 hasConcept C121332964 @default.
- W2023428235 hasConcept C126255220 @default.
- W2023428235 hasConcept C154945302 @default.
- W2023428235 hasConcept C15744967 @default.
- W2023428235 hasConcept C163716315 @default.
- W2023428235 hasConcept C185592680 @default.
- W2023428235 hasConcept C19417346 @default.
- W2023428235 hasConcept C197055811 @default.
- W2023428235 hasConcept C2775924081 @default.
- W2023428235 hasConcept C2775936607 @default.
- W2023428235 hasConcept C31972630 @default.
- W2023428235 hasConcept C33923547 @default.
- W2023428235 hasConcept C41008148 @default.
- W2023428235 hasConcept C47446073 @default.
- W2023428235 hasConcept C55493867 @default.
- W2023428235 hasConcept C57830394 @default.
- W2023428235 hasConcept C62520636 @default.
- W2023428235 hasConcept C63479239 @default.
- W2023428235 hasConcept C99498987 @default.
- W2023428235 hasConceptScore W2023428235C104317684 @default.
- W2023428235 hasConceptScore W2023428235C105795698 @default.
- W2023428235 hasConceptScore W2023428235C106131492 @default.
- W2023428235 hasConceptScore W2023428235C107673813 @default.
- W2023428235 hasConceptScore W2023428235C11413529 @default.
- W2023428235 hasConceptScore W2023428235C115961682 @default.
- W2023428235 hasConceptScore W2023428235C121332964 @default.
- W2023428235 hasConceptScore W2023428235C126255220 @default.
- W2023428235 hasConceptScore W2023428235C154945302 @default.
- W2023428235 hasConceptScore W2023428235C15744967 @default.
- W2023428235 hasConceptScore W2023428235C163716315 @default.
- W2023428235 hasConceptScore W2023428235C185592680 @default.
- W2023428235 hasConceptScore W2023428235C19417346 @default.
- W2023428235 hasConceptScore W2023428235C197055811 @default.
- W2023428235 hasConceptScore W2023428235C2775924081 @default.
- W2023428235 hasConceptScore W2023428235C2775936607 @default.
- W2023428235 hasConceptScore W2023428235C31972630 @default.
- W2023428235 hasConceptScore W2023428235C33923547 @default.
- W2023428235 hasConceptScore W2023428235C41008148 @default.
- W2023428235 hasConceptScore W2023428235C47446073 @default.
- W2023428235 hasConceptScore W2023428235C55493867 @default.
- W2023428235 hasConceptScore W2023428235C57830394 @default.