Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023449143> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2023449143 abstract "The creation and growth of components of a given complexity in a random graph process are studied. In particular, the expected number and total size of all such components is found. It follows that the largest '-component during the process is Op(n 2/3 ) for any given '. The results also yield a new proof of the asymptotic behaviour of Wright's coecients. between the two processes is that in {G(n,m)}, the edges are added at the fixed times 1,2,..., so at time m we have the random graph G(n,m) with m edges, while in {G(n,t)} the edges are added at random times in such a way that at time t = p, we have the random graph G(n,p). ({G(n,t)} may be constructed by letting each edge e in the complete graph Kn appear at a random time Te, with Te independent and uniformly distributed on (0,1), and letting G(n,t) contain the edges that have appeared before t.) In this paper, we will study random variables that depend on the order the edges appear in the process, but not on the time scale. All such variables will thus have the same distribution for both processes (not only asymptotically, but also for each finite n). Hence all results below are valid for both processes. We define the complexity of a connected graph to be its number of edges minus its number of vertices. A component of a graph of complexity ' is called an '-component. Here ' 1; a ( 1)-component is a tree, a 0-component is unicyclic, and '-components with ' 1 are known as complex components. In the beginning of the random graph process, there are no edges at all, and thus n components of order 1 and complexity 1; at the end, we have the complete graph, with a single component of complexity n 2 n. Several authors have studied what happens in between, see e.g. (4, 9, 6, 7, 11, 8). We will here add some results obtained by studying, as in (6), the ways '-components are created. Each time a new edge is added, there are two possibilities:" @default.
- W2023449143 created "2016-06-24" @default.
- W2023449143 creator A5022615833 @default.
- W2023449143 date "2000-01-01" @default.
- W2023449143 modified "2023-09-26" @default.
- W2023449143 title "Growth of components in random graphs" @default.
- W2023449143 cites W1975340857 @default.
- W2023449143 cites W1986766834 @default.
- W2023449143 cites W2001951510 @default.
- W2023449143 cites W2010894431 @default.
- W2023449143 cites W2012184276 @default.
- W2023449143 cites W2040419749 @default.
- W2023449143 cites W2056513564 @default.
- W2023449143 cites W2121373282 @default.
- W2023449143 cites W2478722229 @default.
- W2023449143 doi "https://doi.org/10.1002/1098-2418(200010/12)17:3/4<343::aid-rsa8>3.0.co;2-d" @default.
- W2023449143 hasPublicationYear "2000" @default.
- W2023449143 type Work @default.
- W2023449143 sameAs 2023449143 @default.
- W2023449143 citedByCount "10" @default.
- W2023449143 countsByYear W20234491432012 @default.
- W2023449143 crossrefType "journal-article" @default.
- W2023449143 hasAuthorship W2023449143A5022615833 @default.
- W2023449143 hasConcept C103257674 @default.
- W2023449143 hasConcept C114614502 @default.
- W2023449143 hasConcept C118615104 @default.
- W2023449143 hasConcept C123482549 @default.
- W2023449143 hasConcept C132525143 @default.
- W2023449143 hasConcept C148818006 @default.
- W2023449143 hasConcept C149530733 @default.
- W2023449143 hasConcept C193435613 @default.
- W2023449143 hasConcept C203776342 @default.
- W2023449143 hasConcept C33923547 @default.
- W2023449143 hasConcept C4255713 @default.
- W2023449143 hasConcept C43517604 @default.
- W2023449143 hasConcept C47458327 @default.
- W2023449143 hasConceptScore W2023449143C103257674 @default.
- W2023449143 hasConceptScore W2023449143C114614502 @default.
- W2023449143 hasConceptScore W2023449143C118615104 @default.
- W2023449143 hasConceptScore W2023449143C123482549 @default.
- W2023449143 hasConceptScore W2023449143C132525143 @default.
- W2023449143 hasConceptScore W2023449143C148818006 @default.
- W2023449143 hasConceptScore W2023449143C149530733 @default.
- W2023449143 hasConceptScore W2023449143C193435613 @default.
- W2023449143 hasConceptScore W2023449143C203776342 @default.
- W2023449143 hasConceptScore W2023449143C33923547 @default.
- W2023449143 hasConceptScore W2023449143C4255713 @default.
- W2023449143 hasConceptScore W2023449143C43517604 @default.
- W2023449143 hasConceptScore W2023449143C47458327 @default.
- W2023449143 hasLocation W20234491431 @default.
- W2023449143 hasOpenAccess W2023449143 @default.
- W2023449143 hasPrimaryLocation W20234491431 @default.
- W2023449143 hasRelatedWork W1541265416 @default.
- W2023449143 hasRelatedWork W1982655627 @default.
- W2023449143 hasRelatedWork W1987488849 @default.
- W2023449143 hasRelatedWork W2010894431 @default.
- W2023449143 hasRelatedWork W2014447809 @default.
- W2023449143 hasRelatedWork W2029876610 @default.
- W2023449143 hasRelatedWork W2035720072 @default.
- W2023449143 hasRelatedWork W2041164110 @default.
- W2023449143 hasRelatedWork W2064956991 @default.
- W2023449143 hasRelatedWork W2069091523 @default.
- W2023449143 hasRelatedWork W2093595174 @default.
- W2023449143 hasRelatedWork W2110713813 @default.
- W2023449143 hasRelatedWork W2118601530 @default.
- W2023449143 hasRelatedWork W2121373282 @default.
- W2023449143 hasRelatedWork W2126516965 @default.
- W2023449143 hasRelatedWork W2167266655 @default.
- W2023449143 hasRelatedWork W2246879121 @default.
- W2023449143 hasRelatedWork W2264236951 @default.
- W2023449143 hasRelatedWork W3144881883 @default.
- W2023449143 hasRelatedWork W2092220726 @default.
- W2023449143 isParatext "false" @default.
- W2023449143 isRetracted "false" @default.
- W2023449143 magId "2023449143" @default.
- W2023449143 workType "article" @default.