Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023452507> ?p ?o ?g. }
- W2023452507 endingPage "10" @default.
- W2023452507 startingPage "1" @default.
- W2023452507 abstract "This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms." @default.
- W2023452507 created "2016-06-24" @default.
- W2023452507 creator A5022405104 @default.
- W2023452507 creator A5034394457 @default.
- W2023452507 creator A5040209451 @default.
- W2023452507 creator A5083870757 @default.
- W2023452507 date "2012-01-01" @default.
- W2023452507 modified "2023-10-15" @default.
- W2023452507 title "Modeling of Biological Intelligence for SCM System Optimization" @default.
- W2023452507 cites W1607022282 @default.
- W2023452507 cites W1963919367 @default.
- W2023452507 cites W1965508797 @default.
- W2023452507 cites W1965672655 @default.
- W2023452507 cites W1966569111 @default.
- W2023452507 cites W1968294655 @default.
- W2023452507 cites W1972971874 @default.
- W2023452507 cites W1982548387 @default.
- W2023452507 cites W1985261848 @default.
- W2023452507 cites W1987297140 @default.
- W2023452507 cites W1987497733 @default.
- W2023452507 cites W1991403187 @default.
- W2023452507 cites W1991686551 @default.
- W2023452507 cites W1993571741 @default.
- W2023452507 cites W1994183091 @default.
- W2023452507 cites W2003390304 @default.
- W2023452507 cites W2004492465 @default.
- W2023452507 cites W2005541559 @default.
- W2023452507 cites W2009624703 @default.
- W2023452507 cites W2010067806 @default.
- W2023452507 cites W2015777853 @default.
- W2023452507 cites W2017902784 @default.
- W2023452507 cites W2025543141 @default.
- W2023452507 cites W2026419634 @default.
- W2023452507 cites W2027670672 @default.
- W2023452507 cites W2027747514 @default.
- W2023452507 cites W2031125529 @default.
- W2023452507 cites W2038666675 @default.
- W2023452507 cites W2040964504 @default.
- W2023452507 cites W2042515557 @default.
- W2023452507 cites W2042876421 @default.
- W2023452507 cites W2048305878 @default.
- W2023452507 cites W2052626841 @default.
- W2023452507 cites W2055291518 @default.
- W2023452507 cites W2055664102 @default.
- W2023452507 cites W2058979950 @default.
- W2023452507 cites W2062332397 @default.
- W2023452507 cites W2062769860 @default.
- W2023452507 cites W2062789851 @default.
- W2023452507 cites W2065350252 @default.
- W2023452507 cites W2069503973 @default.
- W2023452507 cites W2074156066 @default.
- W2023452507 cites W2074476617 @default.
- W2023452507 cites W2079123556 @default.
- W2023452507 cites W2093586106 @default.
- W2023452507 cites W2117753199 @default.
- W2023452507 cites W2123771606 @default.
- W2023452507 cites W2131302168 @default.
- W2023452507 cites W2143086378 @default.
- W2023452507 cites W2143560894 @default.
- W2023452507 cites W2145508886 @default.
- W2023452507 cites W2147708216 @default.
- W2023452507 cites W2154808242 @default.
- W2023452507 cites W2164416982 @default.
- W2023452507 cites W2169245194 @default.
- W2023452507 cites W2120515821 @default.
- W2023452507 doi "https://doi.org/10.1155/2012/769702" @default.
- W2023452507 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3227372" @default.
- W2023452507 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22162724" @default.
- W2023452507 hasPublicationYear "2012" @default.
- W2023452507 type Work @default.
- W2023452507 sameAs 2023452507 @default.
- W2023452507 citedByCount "36" @default.
- W2023452507 countsByYear W20234525072012 @default.
- W2023452507 countsByYear W20234525072013 @default.
- W2023452507 countsByYear W20234525072014 @default.
- W2023452507 countsByYear W20234525072015 @default.
- W2023452507 countsByYear W20234525072017 @default.
- W2023452507 countsByYear W20234525072019 @default.
- W2023452507 countsByYear W20234525072020 @default.
- W2023452507 countsByYear W20234525072022 @default.
- W2023452507 crossrefType "journal-article" @default.
- W2023452507 hasAuthorship W2023452507A5022405104 @default.
- W2023452507 hasAuthorship W2023452507A5034394457 @default.
- W2023452507 hasAuthorship W2023452507A5040209451 @default.
- W2023452507 hasAuthorship W2023452507A5083870757 @default.
- W2023452507 hasBestOaLocation W20234525071 @default.
- W2023452507 hasConcept C119487961 @default.
- W2023452507 hasConcept C119857082 @default.
- W2023452507 hasConcept C121835503 @default.
- W2023452507 hasConcept C139502532 @default.
- W2023452507 hasConcept C154945302 @default.
- W2023452507 hasConcept C159149176 @default.
- W2023452507 hasConcept C41008148 @default.
- W2023452507 hasConcept C74750220 @default.
- W2023452507 hasConcept C85617194 @default.
- W2023452507 hasConcept C8880873 @default.
- W2023452507 hasConcept C93768804 @default.
- W2023452507 hasConceptScore W2023452507C119487961 @default.