Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023452955> ?p ?o ?g. }
- W2023452955 abstract "The generation of multi-step density forecasts for non-Gaussian data mostly relies on Monte Carlo simulations which are computationally intensive. Using aggregated wind power in Ireland, we study two approaches of multi-step density forecasts which can be obtained from simple iterations so that intensive computations are avoided. In the first approach, we apply a logistic transformation to normalize the data approximately and describe the transformed data using ARIMA–GARCH models so that multi-step forecasts can be iterated easily. In the second approach, we describe the forecast densities by truncated normal distributions which are governed by two parameters, namely, the conditional mean and conditional variance. We apply exponential smoothing methods to forecast the two parameters simultaneously. Since the underlying model of exponential smoothing is Gaussian, we are able to obtain multi-step forecasts of the parameters by simple iterations and thus generate forecast densities as truncated normal distributions. We generate forecasts for wind power from 15 minutes to 24 hours ahead. Results show that the first approach generates superior forecasts and slightly outperforms the second approach under various proper scores. Nevertheless, the second approach is computationally more efficient and gives more robust results under different lengths of training data. It also provides an attractive alternative approach since one is allowed to choose a particular parametric density for the forecasts, and is valuable when there are no obvious transformations to normalize the data." @default.
- W2023452955 created "2016-06-24" @default.
- W2023452955 creator A5052794520 @default.
- W2023452955 creator A5053305605 @default.
- W2023452955 date "2010-09-01" @default.
- W2023452955 modified "2023-10-17" @default.
- W2023452955 title "Approaches for multi-step density forecasts with application to aggregated wind power" @default.
- W2023452955 cites W142817872 @default.
- W2023452955 cites W1520585082 @default.
- W2023452955 cites W1976255336 @default.
- W2023452955 cites W1979202837 @default.
- W2023452955 cites W1984035328 @default.
- W2023452955 cites W1986071519 @default.
- W2023452955 cites W1988920820 @default.
- W2023452955 cites W1991857164 @default.
- W2023452955 cites W1995177629 @default.
- W2023452955 cites W1999814123 @default.
- W2023452955 cites W2025720061 @default.
- W2023452955 cites W2040604867 @default.
- W2023452955 cites W2048848226 @default.
- W2023452955 cites W2052025260 @default.
- W2023452955 cites W2071726751 @default.
- W2023452955 cites W2074511771 @default.
- W2023452955 cites W2086284119 @default.
- W2023452955 cites W2109669144 @default.
- W2023452955 cites W2118788550 @default.
- W2023452955 cites W2127483845 @default.
- W2023452955 cites W2131070718 @default.
- W2023452955 cites W2132782512 @default.
- W2023452955 cites W2136119713 @default.
- W2023452955 cites W2137018331 @default.
- W2023452955 cites W2156636680 @default.
- W2023452955 cites W2159288286 @default.
- W2023452955 cites W2165799067 @default.
- W2023452955 cites W2179877357 @default.
- W2023452955 cites W2489540272 @default.
- W2023452955 cites W2496675188 @default.
- W2023452955 cites W2795454296 @default.
- W2023452955 cites W3100470920 @default.
- W2023452955 cites W3123624817 @default.
- W2023452955 cites W3123916070 @default.
- W2023452955 cites W3124216392 @default.
- W2023452955 cites W4230410911 @default.
- W2023452955 cites W55912154 @default.
- W2023452955 doi "https://doi.org/10.1214/09-aoas320" @default.
- W2023452955 hasPublicationYear "2010" @default.
- W2023452955 type Work @default.
- W2023452955 sameAs 2023452955 @default.
- W2023452955 citedByCount "34" @default.
- W2023452955 countsByYear W20234529552012 @default.
- W2023452955 countsByYear W20234529552013 @default.
- W2023452955 countsByYear W20234529552014 @default.
- W2023452955 countsByYear W20234529552015 @default.
- W2023452955 countsByYear W20234529552016 @default.
- W2023452955 countsByYear W20234529552017 @default.
- W2023452955 countsByYear W20234529552018 @default.
- W2023452955 countsByYear W20234529552019 @default.
- W2023452955 countsByYear W20234529552020 @default.
- W2023452955 countsByYear W20234529552021 @default.
- W2023452955 countsByYear W20234529552022 @default.
- W2023452955 countsByYear W20234529552023 @default.
- W2023452955 crossrefType "journal-article" @default.
- W2023452955 hasAuthorship W2023452955A5052794520 @default.
- W2023452955 hasAuthorship W2023452955A5053305605 @default.
- W2023452955 hasBestOaLocation W20234529551 @default.
- W2023452955 hasConcept C104317684 @default.
- W2023452955 hasConcept C105795698 @default.
- W2023452955 hasConcept C11413529 @default.
- W2023452955 hasConcept C121332964 @default.
- W2023452955 hasConcept C126255220 @default.
- W2023452955 hasConcept C133710760 @default.
- W2023452955 hasConcept C134306372 @default.
- W2023452955 hasConcept C140479938 @default.
- W2023452955 hasConcept C149782125 @default.
- W2023452955 hasConcept C163716315 @default.
- W2023452955 hasConcept C185592680 @default.
- W2023452955 hasConcept C204241405 @default.
- W2023452955 hasConcept C23922673 @default.
- W2023452955 hasConcept C28826006 @default.
- W2023452955 hasConcept C33923547 @default.
- W2023452955 hasConcept C3770464 @default.
- W2023452955 hasConcept C41008148 @default.
- W2023452955 hasConcept C55493867 @default.
- W2023452955 hasConcept C62520636 @default.
- W2023452955 hasConcept C91602232 @default.
- W2023452955 hasConceptScore W2023452955C104317684 @default.
- W2023452955 hasConceptScore W2023452955C105795698 @default.
- W2023452955 hasConceptScore W2023452955C11413529 @default.
- W2023452955 hasConceptScore W2023452955C121332964 @default.
- W2023452955 hasConceptScore W2023452955C126255220 @default.
- W2023452955 hasConceptScore W2023452955C133710760 @default.
- W2023452955 hasConceptScore W2023452955C134306372 @default.
- W2023452955 hasConceptScore W2023452955C140479938 @default.
- W2023452955 hasConceptScore W2023452955C149782125 @default.
- W2023452955 hasConceptScore W2023452955C163716315 @default.
- W2023452955 hasConceptScore W2023452955C185592680 @default.
- W2023452955 hasConceptScore W2023452955C204241405 @default.
- W2023452955 hasConceptScore W2023452955C23922673 @default.
- W2023452955 hasConceptScore W2023452955C28826006 @default.
- W2023452955 hasConceptScore W2023452955C33923547 @default.